Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cross-species transcriptomic signatures identify mechanisms related to species sensitivity and common responses to nanomaterials

An Author Correction to this article was published on 01 July 2022

This article has been updated

Abstract

Physico-chemical characteristics of engineered nanomaterials are known to be important in determining the impact on organisms but effects are equally dependent upon the characteristics of the organism exposed. Species sensitivity may vary by orders of magnitude, which could be due to differences in the type or magnitude of the biochemical response, exposure or uptake of nanomaterials. Synthesizing conclusions across studies and species is difficult as multiple species are not often included in a study, and differences in batches of nanomaterials, the exposure duration and media across experiments confound comparisons. Here three model species, Danio rerio, Daphnia magna and Chironomus riparius, that differ in sensitivity to lithium cobalt oxide nanosheets are found to differ in immune-response, iron–sulfur protein and central nervous system pathways, among others. Nanomaterial uptake and dissolution does not fully explain cross-species differences. This comparison provides insight into how biomolecular responses across species relate to the varying sensitivity to nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Differential gene expression.
Fig. 2: Cross-species pathway impacts.
Fig. 3: Fe–S and related genes.
Fig. 4: Role of uptake, species.

Data availability

RNA-sequencing data are accessible through the National Center for Biotechnology Information’s Gene Expression Omnibus via accession numbers GSE161036 (chironomids), GSE174016 (daphnids) and GSE179495 (zebrafish).

Change history

References

  1. Klaper, R. D. The known and unknown about the environmental safety of nanomaterials in commerce. Small 16, 2000690 (2020).

    Article  CAS  Google Scholar 

  2. Klaper, R., Arndt, D., Bozich, J. & Dominguez, G. Molecular interactions of nanomaterials and organisms: defining biomarkers for toxicity and high-throughput screening using traditional and next-generation sequencing approaches. Analyst 139, 882–895 (2014).

    Article  CAS  Google Scholar 

  3. Bondarenko, O. et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 87, 1181–1200 (2013).

    Article  CAS  Google Scholar 

  4. Hou, J., Zhou, Y., Wang, C., Li, S. & Wang, X. Toxic effects and molecular mechanism of different types of silver nanoparticles to the aquatic crustacean Daphnia magna. Environ. Sci. Technol. 51, 12868–12878 (2017).

    Article  CAS  Google Scholar 

  5. Choi, J. S. & Park, J. W. Molecular characterization and toxicological effects of citrate-coated silver nanoparticles in a terrestrial invertebrate, the earthworm (Eisenia fetida). Mol. Cell. Toxicol. 11, 423–431 (2015).

    Article  CAS  Google Scholar 

  6. Scherer, C., Brennholt, N., Reifferscheid, G. & Wagner, M. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Sci. Rep. https://doi.org/10.1038/s41598-017-17191-7 (2017).

  7. Rist, S., Baun, A. & Hartmann, N. B. Ingestion of micro- and nanoplastics in Daphnia magna – quantification of body burdens and assessment of feeding rates and reproduction. Environ. Pollut. https://doi.org/10.1016/j.envpol.2017.05.048 (2017).

  8. Spence, R., Gerlach, G., Lawrence, C. & Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 83, 13–34 (2008).

    Article  Google Scholar 

  9. Nath, B. B. Extracellular hemoglobin and environmental stress tolerance in Chironomus larvae. J. Limnol. 77, 104–112 (2018).

    Google Scholar 

  10. Bozich, J., Hang, M., Hamers, R. & Klaper, R. Core chemistry influences the toxicity of multicomponent metal oxide nanomaterials, lithium nickel manganese cobalt oxide, and lithium cobalt oxide to Daphnia magna. Environ. Toxicol. Chem. 36, 2493–2502 (2017).

    Article  CAS  Google Scholar 

  11. Niemuth, N. J. et al. Next-generation complex metal oxide nanomaterials negatively impact growth and development in the benthic invertebrate Chironomus riparius upon settling. Environ. Sci. Technol. 53, 3860–3870 (2019).

    Article  CAS  Google Scholar 

  12. Burkard, M., Betz, A., Schirmer, K. & Zupanic, A. Common gene expression patterns in environmental model organisms exposed to engineered nanomaterials: a meta-analysis. Environ. Sci. Technol. 54, 335–344 (2020).

    Article  CAS  Google Scholar 

  13. Faria, M. et al. Minimum information reporting in bio-nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    Article  CAS  Google Scholar 

  14. Wang, X. et al. Improving cyclic stability of lithium cobalt oxide based lithium ion battery at high voltage by using trimethylboroxine as an electrolyte additive. Electrochim. Acta 173, 804–811 (2015).

    Article  CAS  Google Scholar 

  15. Hamers, R. J. Nanomaterials and global sustainability. Acc. Chem. Res. https://doi.org/10.1021/acs.accounts.6b00634 (2017).

  16. McCoole, M. D., Baer, K. N. & Christie, A. E. Histaminergic signaling in the central nervous system of Daphnia and a role for it in the control of phototactic behavior. J. Exp. Biol. 214, 1773–1782 (2011).

    Article  CAS  Google Scholar 

  17. Baggelaar, M. P., Maccarrone, M. & van der Stelt, M. 2-Arachidonoylglycerol: a signaling lipid with manifold actions in the brain. Prog. Lipid Res. 71, 1–17 (2018).

    Article  CAS  Google Scholar 

  18. Jeong, T.-Y. et al. Effect of β-adrenergic receptor agents on cardiac structure and function and whole-body gene expression in Daphnia magna. Environ. Pollut. https://doi.org/10.1016/j.envpol.2018.06.026 (2018).

  19. Margiotta-Casaluci, L., Owen, S. F., Rand-Weaver, M. & Winter, M. J. Testing the translational power of the zebrafish: an inter-species analysis of responses to cardiovascular drugs. Front. Pharmacol. 10, 893 (2019).

    Article  CAS  Google Scholar 

  20. Mendoza, R. P. & Brown, J. M. Engineered nanomaterials and oxidative stress: current understanding and future challenges. Curr. Opin. Toxicol. 13, 74–80 (2019).

    Article  Google Scholar 

  21. Abdelhalim, M. A. K., Qaid, H. A., Al-Mohy, Y. H. & Ghannam, M. M. The protective roles of vitamin E and α-lipoic acid against nephrotoxicity, lipid peroxidation, and inflammatory damage induced by gold nanoparticles. Int. J. Nanomed. 15, 729–734 (2020).

    Article  CAS  Google Scholar 

  22. Ha, M. H. & Choi, J. Effects of environmental contaminants on hemoglobin gene expression in Daphnia magna: a potential biomarker for freshwater quality monitoring. Arch. Environ. Contamin. Toxicol. 57, 330–337 (2009).

    Article  CAS  Google Scholar 

  23. Prühs, R., Beermann, A. & Schröder, R. The roles of the Wnt-antagonists Axin and Lrp4 during embryogenesis of the red flour beetle Tribolium castaneum. J. Dev. Biol. 5, 10 (2017).

    Article  Google Scholar 

  24. Liang, J. et al. The functions and mechanisms of prefoldin complex and prefoldin-subunits. Cell Biosci. https://doi.org/10.1186/s13578-020-00446-8 (2020).

  25. Serra, A. et al. INSIdE NANO: a systems biology framework to contextualize the mechanism-of-action of engineered nanomaterials. Sci. Rep. 9, 179 (2019).

    Article  Google Scholar 

  26. Newman, M., Ebrahimie, E. & Lardelli, M. Using the zebrafish model for Alzheimer’s disease research. Front. Genet. 5, 189 (2014).

    Google Scholar 

  27. Minegishi, Y., Nakaya, N. & Tomarev, S. I. Mutation in the cebrafish cct2 gene leads to abnormalities of cell cycle and cell death in the retina: a model of CCT2-related Leber congenital amaurosis. Invest. Ophthalmol. Vis. Sci. 59, 995–1004 (2018).

    Article  CAS  Google Scholar 

  28. Willardson, B. M. & Howlett, A. C. Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell. Signal. 19, 2417–2427 (2007).

    Article  CAS  Google Scholar 

  29. Wu, D., Ma, Y., Cao, Y. & Zhang, T. Mitochondrial toxicity of nanomaterials. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134994 (2019).

  30. Nel, A. Toxic potential of materials. Science 311, 622–627 (2007).

    Article  Google Scholar 

  31. Brohi, R. D. et al. Toxicity of nanoparticles on the reproductive system in animal models: a review. Front. Pharmacol. 8, 606 (2017).

    Article  Google Scholar 

  32. Yan, N., Tang, B. Z. & Wang, W.-X. In vivo bioimaging of silver nanoparticle dissolution in the gut environment of zooplankton. ACS Nano https://doi.org/10.1021/acsnano.8b06003 (2018).

  33. Adam, N., Leroux, F., Knapen, D., Bals, S. & Blust, R. The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios. Environ. Pollut. 194, 130–137 (2014).

    Article  CAS  Google Scholar 

  34. Lorenz, C. S. et al. Nano-sized Al2O3 reduces acute toxic effects of thiacloprid on the non-biting midge Chironomus riparius. PLoS One 12, e0176356 (2017).

    Article  Google Scholar 

  35. Frouz, J., Lobinske, R. J., Yaqub, A. & Ali, A. Larval gut pH profile in pestiferous Chironomus crassicaudatus and Glyptotendipes paripes (Chironomidae: Diptera) in reference to the toxicity potential of Bacillus thuringiensis serovar israelensis. J. Am. Mosq. Control Assoc. 23, 355–358 (2007).

    Article  Google Scholar 

  36. van Pomeren, M., Brun, N. R., Peijnenburg, W. J. G. M. & Vijver, M. G. Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages. Aquat. Toxicol. 190, 40–45 (2017).

    Article  Google Scholar 

  37. Laudadio, E. D., Bennett, J. W., Green, C. M., Mason, S. E. & Hamers, R. J. Impact of phosphate adsorption on complex cobalt oxide nanoparticle dispersibility in aqueous media. Environ. Sci. Technol. 52, 30 (2018).

    Article  Google Scholar 

  38. Niemuth, N. J. et al. Protein Fe–S centers as a molecular target of toxicity of a complex transition metal oxide nanomaterial with downstream impacts on metabolism and growth. Environ. Sci. Technol. 54, 15257–15266 (2020).

    Article  CAS  Google Scholar 

  39. Smith, M. & Lazorchak, J. A reformulated, reconstituted water for testing the freshwater amphipod, Hyalella azteca. Environ. Toxicol. Chem. 16, 1229–1233 (1997).

    Article  CAS  Google Scholar 

  40. Andrews, S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

  41. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  42. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article  CAS  Google Scholar 

  43. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. https://doi.org/10.1038/nbt.1883 (2011).

  44. The UniProt Consortium, UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).

  45. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics https://doi.org/10.1186/1471-2105-10-421 (2009).

  46. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  47. Schmidt, H. et al. A high-quality genome assembly from short and long reads for the non-biting midge Chironomus riparius (Diptera). G3 (Bethesda) https://doi.org/10.1534/g3.119.400710 (2020).

  48. Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: an R package for ’omics feature selection and multiple data integration. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1005752 (2017).

  49. Chiesa, M., Colombo, G. I. & Piacentini, L. DaMiRseq—an R/Bioconductor package for data mining of RNA-Seq data: normalization, feature selection and classification. Bioinformatics 34, 1416–1418 (2018).

    Article  CAS  Google Scholar 

  50. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    Article  CAS  Google Scholar 

  51. Mi, H. et al. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 14, 703–721 (2019).

    Article  CAS  Google Scholar 

  52. Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, 191–198 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. CHE-2001611, the NSF Center for Sustainable Nanotechnology (R.J.H and R.D.K.). The Center for Sustainable Nanotechnology is part of the Centers for Chemical Innovation Program. This project used the UWM Great Lakes Genomics Center sequencing and bioinformatics services. UWM Institutional Animal Care and Use Committee protocols followed 20-21 no. 01 and 20-21 no. 50.

Author information

Authors and Affiliations

Authors

Contributions

B.J.C., N.J.N. and R.D.K. conceived the experiment and its design. B.J.C., N.J.N. and E.B. carried out the LCO nanosheet exposures. A.S. prepared the RNA-Seq libraries. O.M. and A.A.M. conducted bioinformatic quality-control analysis and RNA-Seq data analysis. B.J.C. carried out additional downstream analyses, including PLS-DA, pathway classification and enrichment analysis. E.D.L. and R.J.H. provided nanomaterial synthesis and characterization. Y.S. and J.C.W. carried out elemental analysis. B.J.C. and R.D.K. wrote and edited the paper, with contributions and support from all co-authors. Research was supervised by R.D.K.

Corresponding author

Correspondence to Rebecca D. Klaper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary graphical abstract, Figs. 1–5, Tables 1 and 2, methods and discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Curtis, B.J., Niemuth, N.J., Bennett, E. et al. Cross-species transcriptomic signatures identify mechanisms related to species sensitivity and common responses to nanomaterials. Nat. Nanotechnol. 17, 661–669 (2022). https://doi.org/10.1038/s41565-022-01096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01096-2

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research