Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles

Abstract

Optoelectronic effects differentiating absorption of right and left circularly polarized photons in thin films of chiral materials are typically prohibitively small for their direct photocurrent observation. Chiral metasurfaces increase the electronic sensitivity to circular polarization, but their out-of-plane architecture entails manufacturing and performance trade-offs. Here, we show that nanoporous thin films of chiral nanoparticles enable high sensitivity to circular polarization due to light-induced polarization-dependent ion accumulation at nanoparticle interfaces. Self-assembled multilayers of gold nanoparticles modified with l-phenylalanine generate a photocurrent under right-handed circularly polarized light as high as 2.41 times higher than under left-handed circularly polarized light. The strong plasmonic coupling between the multiple nanoparticles producing planar chiroplasmonic modes facilitates the ejection of electrons, whose entrapment at the membrane–electrolyte interface is promoted by a thick layer of enantiopure phenylalanine. Demonstrated detection of light ellipticity with equal sensitivity at all incident angles mimics phenomenological aspects of polarization vision in marine animals. The simplicity of self-assembly and sensitivity of polarization detection found in optoionic membranes opens the door to a family of miniaturized fluidic devices for chiral photonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polarization-sensitive optoionic effects in nanofilms from chiral plasmonic NPs.
Fig. 2: Photocurrent generation across nanofilms from l-Phe-NPs.
Fig. 3: Uniqueness of Phe-NPs for generating CPL-dependent photocurrent.
Fig. 4: Photocurrent generation via plasmon-driven ejection of electrons to the particle–medium interface.
Fig. 5: CPL detection using multilayer nanofilms.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All data that support the findings of this study have been included in the main text and Supplementary Information. Any additional materials and data are available from the corresponding authors on reasonable request.

References

  1. McIver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2011).

    Article  CAS  Google Scholar 

  2. Hatano, T., Ishihara, T., Tikhodeev, S. G. & Gippius, N. A. Transverse photovoltage induced by circularly polarized light. Phys. Rev. Lett. 103, 103906 (2009).

    Article  CAS  Google Scholar 

  3. Bai, Q. Manipulating photoinduced voltage in metasurface with circularly polarized light. Opt. Express 23, 5348–5356 (2015).

    Article  CAS  Google Scholar 

  4. Yokoyama, A., Yoshida, M., Ishii, A. & Kato, Y. K. Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality. Phys. Rev. X 4, 011005 (2014).

    CAS  Google Scholar 

  5. Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    Article  CAS  Google Scholar 

  6. Yang, Y., da Costa, R. C., Fuchter, M. J. & Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photon. 7, 634–638 (2013).

    Article  CAS  Google Scholar 

  7. Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).

    Article  CAS  Google Scholar 

  8. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    Article  CAS  Google Scholar 

  9. Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    Article  CAS  Google Scholar 

  10. Aca, E. T., Buchsbaum, S. F., Combs, C., Fornasiero, F. & Siwy, Z. S. Biomimetic potassium-selective nanopores. Sci. Adv. 5, eaav2568 (2019).

    Article  CAS  Google Scholar 

  11. Cheng, C., Jiang, G., Simon, G. P., Liu, J. Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).

    Article  CAS  Google Scholar 

  12. Wang, R. et al. Temperature-sensitive artificial channels through pillar[5]arene-based host-guest interactions. Angew. Chem. Int. Ed. Engl. 56, 5294–5298 (2017).

    Article  CAS  Google Scholar 

  13. Zhang, Z. et al. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 11, 875 (2020).

    Article  CAS  Google Scholar 

  14. Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017).

    Article  CAS  Google Scholar 

  15. Sun, Y. et al. A biomimetic chiral-driven ionic gate constructed by pillar[6]arene-based host-guest systems. Nat. Commun. 9, 2617 (2018).

    Article  CAS  Google Scholar 

  16. Sun, Y. et al. A light-regulated host-guest-based nanochannel system inspired by channelrhodopsins protein. Nat. Commun. 8, 260 (2017).

    Article  CAS  Google Scholar 

  17. Xie, X., Crespo, G. A., Mistlberger, G. & Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 6, 202–207 (2014).

    Article  CAS  Google Scholar 

  18. Mourot, A. et al. Rapid optical control of nociception with an ion-channel photoswitch. Nat. Methods 9, 396–402 (2012).

    Article  CAS  Google Scholar 

  19. White, W., Sanborn, C. D., Reiter, R. S., Fabian, D. M. & Ardo, S. Observation of photovoltaic action from photoacid-modified Nafion due to light-driven ion transport. J. Am. Chem. Soc. 139, 11726–11733 (2017).

    Article  CAS  Google Scholar 

  20. Xiao, K. et al. Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 10, 74 (2019).

    Article  CAS  Google Scholar 

  21. Palmer, B. A. et al. A highly reflective biogenic photonic material from core-shell birefringent nanoparticles. Nat. Nanotechnol. 15, 138–144 (2020).

    Article  CAS  Google Scholar 

  22. Roberts, N. W., Chiou, T. H., Marshall, N. J. & Cronin, T. W. A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region. Nat. Photon. 3, 641–644 (2009).

    Article  CAS  Google Scholar 

  23. Chiou, T. H. et al. Circular polarization vision in a stomatopod crustacean. Curr. Biol. 18, 429–434 (2008).

    Article  CAS  Google Scholar 

  24. Tang, Z. et al. Photo-driven active ion transport through a Janus microporous membrane. Angew. Chem. Int. Ed. Engl. 59, 6244–6248 (2020).

    Article  CAS  Google Scholar 

  25. Yang, J. et al. Photo-induced ultrafast active ion transport through graphene oxide membranes. Nat. Commun. 10, 1171 (2019).

    Article  CAS  Google Scholar 

  26. Xiao, K. et al. Photo-driven ion transport for a photodetector based on an asymmetric carbon nitride nanotube membrane. Angew. Chem. Int. Ed. Engl. 58, 12574–12579 (2019).

    Article  CAS  Google Scholar 

  27. Edel, J. B., Kornyshev, A. A., Kucernak, A. R. & Urbakh, M. Fundamentals and applications of self-assembled plasmonic nanoparticles at interfaces. Chem. Soc. Rev. 45, 1581–1596 (2016).

    Article  CAS  Google Scholar 

  28. Kotov, N. A., Meldrum, F. C., Wu, C. & Fendler, J. H. Monoparticulate layer and Langmuir–Blodgett-type multiparticulate layers of size-quantized cadmium sulfide clusters: a colloid-chemical approach to superlattice construction. J. Phys. Chem. 98, 2735–2738 (1994).

    Article  CAS  Google Scholar 

  29. Udayabhaskararao, T. et al. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices. Science 358, 514–518 (2017).

    Article  CAS  Google Scholar 

  30. Knoppe, S. & Bürgi, T. Chirality in thiolate-protected gold clusters. Acc. Chem. Res. 47, 1318–1326 (2014).

    Article  CAS  Google Scholar 

  31. Zhang, Q. et al. Unraveling the origin of chirality from plasmonic nanoparticle–protein complexes. Science 365, 1475–1478 (2019).

    Article  CAS  Google Scholar 

  32. Chen, W. et al. Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 9, 2153–2159 (2009).

    Article  CAS  Google Scholar 

  33. Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    Article  CAS  Google Scholar 

  34. Ben-Moshe, A., Maoz, B. M., Govorov, A. O. & Markovich, G. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chem. Soc. Rev. 42, 7028–7041 (2013).

    Article  CAS  Google Scholar 

  35. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  CAS  Google Scholar 

  36. Zhao, J., Li, B., Onda, K., Feng, M. & Petek, H. Solvated electrons on metal oxide surfaces. Chem. Rev. 106, 4402–4427 (2006).

    Article  CAS  Google Scholar 

  37. Matricardi, C. et al. Gold nanoparticle plasmonic superlattices as surface-enhanced Raman spectroscopy substrates. ACS Nano 12, 8531–8539 (2018).

    Article  CAS  Google Scholar 

  38. Wang, D., Guan, J., Hu, J., Bourgeois, M. R. & Odom, T. W. Manipulating light–matter interactions in plasmonic nanoparticle lattices. Acc. Chem. Res. 52, 2997–3007 (2019).

    Article  CAS  Google Scholar 

  39. Mueller, N. S. et al. Deep strong light–matter coupling in plasmonic nanoparticle crystals. Nature 583, 780–784 (2020).

    Article  CAS  Google Scholar 

  40. Lee, S. H. et al. Highly photoresponsive and wavelength-selective circularly-polarized-light detector based on metal-oxides hetero-chiral thin film. Sci. Rep. 6, 19580 (2016).

    Article  CAS  Google Scholar 

  41. Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019).

    Article  CAS  Google Scholar 

  42. Do, T. D., Kincannon, W. M. & Bowers, M. T. Phenylalanine oligomers and fibrils: the mechanism of assembly and the importance of tetramers and counterions. J. Am. Chem. Soc. 137, 10080–10083 (2015).

    Article  CAS  Google Scholar 

  43. Singh, V., Rai, R. K., Arora, A., Sinha, N. & Thakur, A. K. Therapeutic implication of l-phenylalanine aggregation mechanism and its modulation by d-phenylalanine in phenylketonuria. Sci. Rep. 4, 3875 (2014).

    Article  CAS  Google Scholar 

  44. Amdursky, N. & Stevens, M. M. Circular dichroism of amino acids: following the structural formation of phenylalanine. ChemPhysChem 16, 2768–2774 (2015).

    Article  CAS  Google Scholar 

  45. Xia, Y. et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 6, 580–587 (2011).

    Article  CAS  Google Scholar 

  46. Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).

    Article  CAS  Google Scholar 

  47. Senocrate, A., Kotomin, E. & Maier, J. On the way to optoionics. Helv. Chim. Acta 103, e2000073 (2020).

    Article  CAS  Google Scholar 

  48. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    Article  CAS  Google Scholar 

  49. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014).

    Article  CAS  Google Scholar 

  50. Nakanishi, H. et al. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature 460, 371–375 (2009).

    Article  CAS  Google Scholar 

  51. Cortes, E. et al. Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 8, 14880 (2017).

    Article  CAS  Google Scholar 

  52. Hapiot, P., Konovalov, V. V. & Saveant, J.-M. Application of laser pulse photoinjection of electrons from metal electrodes to the determination of reduction potentials of organic radicals in aprotic solvents. J. Am. Chem. Soc. 117, 1428–1434 (1995).

    Article  CAS  Google Scholar 

  53. González-Rubio, G. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 368, 1472–1477 (2020).

    Article  CAS  Google Scholar 

  54. Di Nuzzo, D. et al. Circularly polarized photoluminescence from chiral perovskite thin films at room temperature. ACS Nano 14, 7610–7616 (2020).

    Article  CAS  Google Scholar 

  55. Zhao, X. et al. Tuning the interactions between chiral plasmonic films and living cells. Nat. Commun. 8, 2007 (2017).

    Article  CAS  Google Scholar 

  56. Hu, L., Chen, M., Fang, X. & Wu, L. Oil–water interfacial self-assembly: a novel strategy for nanofilm and nanodevice fabrication. Chem. Soc. Rev. 41, 1350–1362 (2012).

    Article  CAS  Google Scholar 

  57. Gao, J., Feng, Y., Guo, W. & Jiang, L. Nanofluidics in two-dimensional layered materials: inspirations from nature. Chem. Soc. Rev. 46, 5400–5424 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.X. acknowledges support from the National Key Research and Development Program of China (grant no. 2017YFA0206902), W.Z. acknowledges support from the National Key Research and Development Program of China (grant no. 2017YFA0303400), H.K., L.X. and M.S. acknowledge support from the National Natural Science Foundation of China (grant nos. 21925402, 32071400 and 21977038), H.K. acknowledges support from the Natural Science Foundation of Jiangsu Province (grant no. BK20212014), W.Z. acknowledges support from the National Natural Science Foundation of China (grant nos. 11774036 and 12174032) and from the National Natural Science Foundation of China/Research Grants Council (grant no. 11861161002). N.A.K. is grateful for support from the National Science Foundation via projects NSF 1463474 “Energy- and Cost-Efficient Manufacturing Employing Nanoparticles” and NSF 1566460 “Nanospiked Particles for Photocatalysis”. R.K. acknowledges support from the Minerva Foundation with funding from the Federal German Ministry for Education and Research. F.M.C., W.R.G., M.C.S., E.B.C.-N., E.C.P. and A.F.M. are grateful to the Brazilian funding agencies CAPES (finance code 001), CNPq-INCT (573742/2008-1) and FAPESP (2012/15147-4, 2013/07296-2, 2014/50249-8, 2015/12851-0 and 2017/11986-5) for financial support and the HPC resources provided by the SDumont supercomputer at the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil; http://sdumont.lncc.br) and by the Cloud@UFSCar (https://www.sin.ufscar.br). A.F.M. is grateful to MEC/PET for a fellowship and to CNPq for a research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

H.K., R.K., N.A.K. and C.X. conceived the project and designed the experiments. J.C. was responsible for electrochemical, CD and CPL measurements. W.Z. was responsible for the calculations of optical response (absorption and circular dichroism) and photocurrent calculations based on the Poisson–Nernst–Planck equation. L.X. and C.H. performed the HRTEM, TEM, SEM and AFM experiments. L.X. and W.M. carried out the preparation of gold nanofilms. M.S. and X.W. were responsible for the synthesis and modification of gold NPs with different particle sizes. F.M.C., W.R.G., M.C.S., E.B.C.-N., E.C.P. and A.F.de.M. designed, executed and analysed the simulations of DFT calculations, electrodynamics calculations and finite element calculations and wrote the corresponding text. R.A.L.V., X.L., X.Q. and J.X. carried out calculations related to the interaction between Phe and gold. H.K. and N.A.K. conceptualized the work. C.X. supervised the study. H.K., R.K., N.A.K. and C.X. analysed and discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Chuanlai Xu, Rafal Klajn, Nicholas A. Kotov or Hua Kuang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Malcolm Kadodwala, Stefan Meskers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22 and Tables 1–3.

Supplementary Video 1

The contributions to electrostatic potential from the NP core and surface ligands under different wavelengths of light: the case of 12 Phe ligands.

Supplementary Video 2

The contributions to electrostatic potential from the NP core and surface ligands under different wavelengths of light: the case of 4 Cit ligands + 8 Phe ligands.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Zhang, W., Xu, L. et al. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nat. Nanotechnol. 17, 408–416 (2022). https://doi.org/10.1038/s41565-022-01079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01079-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing