Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process

Abstract

Micropollutants in the aquatic environment pose a high risk to both environmental and human health. The photocatalytic degradation of steroid hormones in a flow-through photocatalytic membrane reactor under UV light (365 nm) at environmentally relevant concentrations (50 ng l–1 to 1 mg l–1) was examined using a polyethersulfone–titanium dioxide (PES–TiO2) membrane. The TiO2 nanoparticles (10–30 nm) were immobilized both on the surface and in the nanopores (220 nm) of the membrane. Water quality and operational parameters were evaluated to elucidate the limiting factors in the degradation of steroid hormones. Flow through the photocatalytic membrane increased contact between the micropollutants and ·OH in the pores. Notably, 80% of both oestradiol and oestrone was removed from a 200 ng l–1 feed (at 25 mW cm2 and 300 l m2 h–1). Progesterone and testosterone removal was lower at 44% and 33%, respectively. Increasing the oestradiol concentration to 1 mg l–1 resulted in 20% removal, whereas with a 100 ng l–1 solution, a maximum removal of 94% was achieved at 44 mW cm2 and 60 l m2 h–1. The effectiveness of the relatively well-known PES–TiO2 membrane for micropollutant removal has been demonstrated; this effectiveness is due to the nanoscale size of the membrane, which provides a high surface area and facilitates close contact of the radicals with the very small (0.8 nm) micropollutant at an extremely low, environmentally relevant concentration (100 ng l–1).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SEM image and a schematic of the PES–TiO2 photocatalytic membrane.
Fig. 2: Photocatalytic degradation of E2 on PES and TiO2_210C in the flow-through system.
Fig. 3: Removal and rate of disappearance of E2 under different operational parameters.
Fig. 4: Removal and rate of disappearance of E2 under different solution chemistry conditions.
Fig. 5: Removal of four SHs by photocatalytic degradation on TiO2_210C.
Fig. 6: Enhancement of PMR operation.

Similar content being viewed by others

Data availability

The data that supports the findings of this research will be available upon request.

References

  1. Escher, B. I., Stapleton, H. M. & Schymanski, E. L. Tracking complex mixtures of chemicals in our changing environment. Science 367, 388–392 (2020).

    Article  CAS  Google Scholar 

  2. Johnson, A. C., Jin, X., Nakada, N. & Sumpter, J. P. Learning from the past and considering the future of chemicals in the environment. Science 367, 384–387 (2020).

    Article  CAS  Google Scholar 

  3. Aemig, Q., Helias, A. & Patureau, D. Impact assessment of a large panel of organic and inorganic micropollutants released by wastewater treatment plants at the scale of France. Water Res. 188, 116524 (2021).

    Article  CAS  Google Scholar 

  4. Gonzalez, A. et al. Steroid hormones and estrogenic activity in the wastewater outfall and receiving waters of the Chascomus chained shallow lakes system (Argentina). Sci. Total Environ. 743, 140401 (2020).

    Article  CAS  Google Scholar 

  5. Adeel, M., Song, X., Wang, Y., Francis, D. & Yang, Y. Environmental impact of estrogens on human, animal and plant life: a critical review. Environ. Int. 99, 107–119 (2017).

    Article  CAS  Google Scholar 

  6. Kuch, H. M. & Ballschmiter, K. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC−(NCI)−MS in the picogram per liter range. Environ. Sci. Technol. 35, 3201–3206 (2001).

    Article  CAS  Google Scholar 

  7. Luo, Y. et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473474, 619–641 (2014).

    Article  CAS  Google Scholar 

  8. Pelissero, C. et al. Vitellogenin synthesis in cultured hepatocytes; an in vitro test for the estrogenic potency of chemicals. J. Steroid Biochem. Mol. Biol. 44, 263–272 (1993).

    Article  CAS  Google Scholar 

  9. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December on the Quality of Water Intended for Human Consumption (EU, 2020).

  10. Directive of the European Parliament and of the Council on the Quality of Water Intended for Human Consumption (Recast) 2017/0332(COD) (EU, 2018).

  11. Alvarez, P. J. J., Chan, C. K., Elimelech, M., Halas, N. J. & Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 13, 634–641 (2018).

    Article  CAS  Google Scholar 

  12. Hodges, B. C., Cates, E. L. & Kim, J. H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 13, 642–650 (2018).

    Article  CAS  Google Scholar 

  13. Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018).

    Article  Google Scholar 

  14. Fischer, K., Gläser, R. & Schulze, A. Nanoneedle and nanotubular titanium dioxide–PES mixed matrix membrane for photocatalysis. Appl. Catal. B 160161, 456–464 (2014).

  15. Ahmad, R. et al. Photocatalytic systems as an advanced environmental remediation: recent developments, limitations and new avenues for applications. J. Environ. Chem. Eng. 4, 4143–4164 (2016).

    Article  CAS  Google Scholar 

  16. Orozco-Hernández, L. et al. 17-β-Estradiol: significant reduction of its toxicity in water treated by photocatalysis. Sci. Total Environ. 669, 955–963 (2019).

    Article  CAS  Google Scholar 

  17. Castellanos, R. M., Paulo Bassin, J., Dezotti, M., Boaventura, R. A. R. & Vilar, V. J. P. Tube-in-tube membrane reactor for heterogeneous TiO2 photocatalysis with radial addition of H2O2. Chem. Eng. J. 395, 124998 (2020).

    Article  CAS  Google Scholar 

  18. Mozia, S. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep. Purif. Technol. 73, 71–91 (2010).

    Article  CAS  Google Scholar 

  19. Wang, M. et al. Preliminary study on the removal of steroidal estrogens using TiO2-doped PVDF ultrafiltration membranes. Water 8, 134 (2016).

  20. Tsehaye, M. T., Velizarov, S. & Van der Bruggen, B. Stability of polyethersulfone membranes to oxidative agents: a review. Polym. Degrad. Stab. 157, 15–33 (2018).

    Article  CAS  Google Scholar 

  21. Berger, T. E., Regmi, C., Schäfer, A. I. & Richards, B. S. Photocatalytic degradation of organic dye via atomic layer deposited TiO2 on ceramic membranes in single-pass flow-through operation. J. Membr. Sci. 604, 118015 (2020).

    Article  CAS  Google Scholar 

  22. Lyubimenko, R., Busko, D., Richards, B. S., Schäfer, A. I. & Turshatov, A. Efficient photocatalytic removal of methylene blue using a metalloporphyrin–poly(vinylidene fluoride) hybrid membrane in a flow-through reactor. ACS Appl. Mater. Interfaces 11, 31763–31776 (2019).

    Article  CAS  Google Scholar 

  23. Zhao, Y. et al. Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nat. Commun. 11, 6228 (2020).

    Article  CAS  Google Scholar 

  24. Horovitz, I. et al. Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: influence of physical parameters. J. Hazard. Mater. 310, 98–107 (2016).

    Article  CAS  Google Scholar 

  25. Regmi, C. et al. Comparison of photocatalytic membrane reactor types for the degradation of an organic molecule by TiO2-coated PES membrane. Catalysts 10, 725 (2020).

    Article  CAS  Google Scholar 

  26. Fischer, K. et al. Synthesis of high crystalline TiO2 nanoparticles on a polymer membrane to degrade pollutants from water. Catalysts 8, 376 (2018).

    Article  CAS  Google Scholar 

  27. Fischer, K. et al. Low-temperature synthesis of anatase/rutile/brookite TiO2 nanoparticles on a polymer membrane for photocatalysis. Catalysts 7, 209 (2017).

    Article  CAS  Google Scholar 

  28. Zhang, S., Hedtke, T., Zhou, X., Elimelech, M. & Kim, J.-H. Environmental applications of engineered materials with nanoconfinement. ACS ES T Eng. 1, 706–724 (2021).

    Article  CAS  Google Scholar 

  29. Ollis, D. F., Pelizzetti, E. & Serpone, N. Photocatalyzed destruction of water contaminants. Environ. Sci. Technol. 25, 1522–1529 (1991).

    Article  CAS  Google Scholar 

  30. Herrmann, J.-M. Photocatalysis fundamentals revisited to avoid several misconceptions. Appl. Catal. B 99, 461–468 (2010).

    Article  CAS  Google Scholar 

  31. Renken, A. & Kiwi-Minsker, L. in Advances in Catalysis, Vol. 53 (eds Gates, B. C. & Knözinger, H.) Ch. 2 (Elsevier, 2010).

  32. Gao, Y. et al. Filtration-enhanced highly efficient photocatalytic degradation with a novel electrospun rGO@TiO2 nanofibrous membrane: implication for improving photocatalytic efficiency. Appl. Catal. B 268, 118737 (2020).

    Article  CAS  Google Scholar 

  33. Friedmann, D., Mendive, C. & Bahnemann, D. TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B 99, 398–406 (2010).

    Article  CAS  Google Scholar 

  34. Van der Bruggen, B., Vandecasteele, C., Van Gestel, T., Doyen, W. & Leysen, R. A review of pressure‐driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 22, 46–56 (2003).

    Article  Google Scholar 

  35. Imbrogno, A., Samanta, P. & Schäfer, A. I. Fate of steroid hormone micropollutant estradiol in a hybrid magnetic ion exchange resin-nanofiltration process. Environ. Chem. 16, 630 (2019).

    Article  CAS  Google Scholar 

  36. Fogler, H. S. Elements of Chemical Reaction Engineering 5th edn (Pearson, 2016).

  37. Carretero-Genevrier, A., Boissiere, C., Nicole, L. & Grosso, D. Distance dependence of the photocatalytic efficiency of TiO2 revealed by in situ ellipsometry. J. Am. Chem. Soc. 134, 10761–10764 (2012).

    Article  CAS  Google Scholar 

  38. Hurwitz, A. R. & Liu, S. T. Determination of aqueous solubility and pKa values of estrogen. J. Pharm. Sci. 66, 624–627 (1977).

    Article  CAS  Google Scholar 

  39. Lewis, K. M. & Archer, R. D. pKa values of estrone, 17β-estradiol and 2-methoxyestrone. Steroids 34, 485–499 (1979).

    Article  CAS  Google Scholar 

  40. Turchi, C. S. & Ollis, D. F. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122, 178–192 (1990).

    Article  CAS  Google Scholar 

  41. Schäfer, A., Nghiem, L. & Waite, T. Removal of the natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis. Environ. Sci. Technol. 37, 182–188 (2003).

    Article  CAS  Google Scholar 

  42. Ohko, Y. et al. 17β-Estradiol degradation by TiO2 photocatalysis as a means of reducing estrogenic activity. Environ. Sci. Technol. 36, 4175–4181 (2002).

    Article  CAS  Google Scholar 

  43. Mai, J., Sun, W., Xiong, L., Liu, Y. & Ni, J. Titanium dioxide mediated photocatalytic degradation of 17β-estradiol in aqueous solution. Chemosphere 73, 600–606 (2008).

    Article  CAS  Google Scholar 

  44. Schäfer, A. I., Akanyeti, I. & Semiao, A. J. Micropollutant sorption to membrane polymers: a review of mechanisms for estrogens. Adv. Colloid Interface Sci. 164, 100–117 (2011).

    Article  CAS  Google Scholar 

  45. Lyubimenko, R., Richards, B. S., Turshatov, A. & Schäfer, A. I. Separation and degradation detection of nanogram-per-litre concentrations of radiolabelled steroid hormones using combined liquid chromatography and flow scintillation analysis. Sci. Rep. 10, 7095 (2020).

    Article  CAS  Google Scholar 

  46. Arlos, M. J. et al. Photocatalytic decomposition of selected estrogens and their estrogenic activity by UV-LED irradiated TiO2 immobilized on porous titanium sheets via thermal-chemical oxidation. J. Hazard. Mater. 318, 541–550 (2016).

    Article  CAS  Google Scholar 

  47. Chaves, F. P. et al. Comparative endocrine disrupting compound removal from real wastewater by UV/Cl and UV/H2O2: effect of pH, estrogenic activity, transformation products and toxicity. Sci. Total Environ. 746, 141041 (2020).

    Article  CAS  Google Scholar 

  48. Mboula, V. M. et al. Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity. Appl. Catal. B 162, 437–444 (2015).

    Article  CAS  Google Scholar 

  49. Zhang, W., Li, Y., Su, Y., Mao, K. & Wang, Q. Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent. J. Hazard. Mater. 215216, 252–258 (2012).

    Article  CAS  Google Scholar 

  50. Bridle, H. L., Heringa, M. B. & Schäfer, A. I. Solid-phase microextraction to determine micropollutant–macromolecule partition coefficients. Nat. Protoc. 11, 1328–1344 (2016).

    Article  CAS  Google Scholar 

  51. Imbrogno, A. & Schäfer, A. I. Comparative study of nanofiltration membrane characterization devices of different dimension and configuration (cross flow and dead end). J. Membr. Sci. 585, 67–80 (2019).

    Article  CAS  Google Scholar 

  52. Millipore Express PLUS Membrane GPWP02500 (Millipore, 2017); http://www.merckmillipore.com/DE/en/product/Millipore-Express-PLUS-Membrane-Filter,MM_NF-GPWP02500

  53. Sun, W., Li, S., Mai, J. & Ni, J. Initial photocatalytic degradation intermediates/pathways of 17α-ethynylestradiol: effect of pH and methanol. Chemosphere 81, 92–99 (2010).

    Article  CAS  Google Scholar 

  54. O. Levenspiel, Chapter 2. Kinetics of Homogeneous Reactions, in: Chemical Reaction Engineering, Third Edition, John Wiley & Sons, 1998, pp. 13-37.

  55. Lyubimenko, R., Gutierrez Cardenas, O.I., Turshatov, A., Richards, B. S. & Schäfer, A. I. Photodegradation of steroid-hormone micropollutants in a flow-through membrane reactor coated with Pd(II)-porphyrin. Appl. Catal. B 291, 120097 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Helmholtz Association is thanked for Recruitment Initiative funding, as well as the Helmholtz ERC Recognition Award NAMEPORED to A.I.S. Deutscher Akademischer Austauschdienst (DAAD) provided a PhD stipend to S.L. H. Lambach and S. Schweikert-Joß (IMVT-KIT) are thanked for the fabrication of the photocatalytic membrane cell. At IMT-KIT, B. S. Richards contributed helpful discussions on light data analysis and T. Berger provided support in micro-cross-flow system troubleshooting, LabVIEW programming and light absorption measurements. At Leibniz-IOM, A. Prager supplied SEM images and A. A. Latif performed the TiO2 coating of membranes. T. Luxbacher (Anton Paar) and J. Lützenkirchen (INE-KIT) contributed expertise with streaming potential measurements. At IAMT, R. Lyubimenko developed the UHPLC analysis, assisted with operation and contributed to discussion of calculation methods, C. Regmi prepared membrane cross-sections, J. C. Espíndola discussed aspects of data interpretation, A. Imbrogno established the error calculation methodology, M. Nguyen supported with LabVIEW operation, IT troubleshooting, provided hormone properties and took care of regraphing and error corrections, E. Véron carried out E2 photocatalytic degradation experiments with the TiO2_120C membrane, and C. Suliani Raota carried out repeat experiments with methylene blue. Last but not least, we express our sincere gratitude to F.-D. Kopinke (UFZ Leipzig) for his post-acceptance review that helped identify errors and significantly improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.I.S. developed the concept and methodology of the project. S.L. performed photocatalytic experiments and analysed the data. K.F. and A.S. developed and synthesized the photocatalysts. S.L. wrote the original manuscript, and A.I.S., K.F. and A.S. edited and reviewed the manuscript. K.F. and A.S. provided the resources for nanoparticle synthesis and membrane coating. A.I.S. provided the funding and resources for photocatalytic membrane filtration and sample analysis.

Corresponding author

Correspondence to Andrea I. Schäfer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supporting information, Figs. 1–12 and Tables 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, S., Fischer, K., Schulze, A. et al. Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process. Nat. Nanotechnol. 17, 417–423 (2022). https://doi.org/10.1038/s41565-022-01074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01074-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing