Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer

Abstract

The uptake pathways of nanoplastics by edible plants have recently been qualitatively investigated. There is an urgent need to accurately quantify nanoplastics accumulation in plants. Polystyrene (PS) particles with a diameter of 200 nm were doped with the europium chelate Eu–β-diketonate (PS-Eu), which was used to quantify PS-Eu particles uptake by wheat (Triticum aestivum) and lettuce (Lactuca sativa), grown hydroponically and in sandy soil using inductively coupled plasma mass spectrometry. PS-Eu particles accumulated mainly in the roots, while transport to the shoots was limited (for example, <3% for 5,000 μg PS particles per litre exposure). Visualization of PS-Eu particles in the roots and shoots was performed with time-gated luminescence through the time-resolved fluorescence of the Eu chelate. The presence of PS-Eu particles in the plant was further confirmed by scanning electron microscopy. Doping with lanthanide chelates provides a versatile strategy for elucidating the interactions between nanoplastics and plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PS-Eu particles images and elemental composition.
Fig. 2: Time-gated imaging of wheat root, stem and leaf after exposure to PS-Eu particles.
Fig. 3: Time-gated imaging of lettuce root, stem and leaf after exposure to PS-Eu particles.
Fig. 4: Bioaccumulation of PS-Eu particles in two crop plants after exposure in solution and soil.
Fig. 5: SEM images of PS-Eu particles localization in the root and leaf of a wheat plant.
Fig. 6: SEM images of PS-Eu particles localization in the root of a lettuce plant.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional datasets related to this study are available from the corresponding author upon reasonable request.

References

  1. Wallace, H. Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 14, e04501 (2016).

    Google Scholar 

  2. Fahn, A. Plant Anatomy (Pergamon, 1982).

  3. Jeong, C. B. J. et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environ. Sci. Technol. 50, 8849–8857 (2016).

    Article  CAS  Google Scholar 

  4. Le, L. L. et al. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans. Environ. Sci. Nano. 5, 2009–2020 (2018).

    Article  Google Scholar 

  5. Mateos-Cardenas, A., van Pelt, F. N. A. M., O’Halloran, J. & Jansen, M. A. K. Adsorption, uptake and toxicity of micro- and nanoplastics: effects on terrestrial plants and aquatic macrophytes. Environ. Pollut. 284, 117183 (2021).

    Article  CAS  Google Scholar 

  6. de Souza Machado, A. A., Kloas, W., Zarf, C., Hempel, S. & Rillig, M. C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol. 24, 1405–1416 (2018).

    Article  Google Scholar 

  7. Rillig, M. C., Lehmann, A., de Souza Machado, A. A. & Yang, G. Microplastic effects on plants. New Phytol. 223, 1066–1070 (2019).

    Article  Google Scholar 

  8. Mayo, M. A. & Cocking, E. C. Pinocytic uptake of polystyrene latex particles by isolated tomato fruit protoplasts. Protoplasma 68, 223–230 (1969).

    Article  CAS  Google Scholar 

  9. Eicherta, T., Kurtza, B. A., Steinerb, U. & Goldbach, H. E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water suspended nanoparticles. Physiol. Plant. 134, 151–160 (2008).

    Article  CAS  Google Scholar 

  10. Etxeberria, E., Gonzalez, P., Baroja-Fernández, E. & Romero, J. P. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells. Plant Signal. Behav. 1, 196–200 (2006).

    Article  Google Scholar 

  11. Li, L. Z. et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 3, 929–937 (2020).

    Article  Google Scholar 

  12. Sun, H. F., Lei, C. L., Xu, J. H. & Li, R. L. Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. J. Hazard. Mater. 416, 125854 (2021).

    Article  CAS  Google Scholar 

  13. Sun, X. D. et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 15, 755–760 (2020).

    Article  CAS  Google Scholar 

  14. Jiang, X. F. et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ. Pollut. 250, 831–838 (2019).

    Article  CAS  Google Scholar 

  15. Lian, J. P. et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). J. Hazard. Mater. 385, 121620 (2020).

    Article  CAS  Google Scholar 

  16. Giorgetti, L. et al. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: internalization in root cells, induction of toxicity and oxidative stress. Plant Physiol. Biochem. 149, 170–177 (2020).

    Article  CAS  Google Scholar 

  17. Bosker, T., Bouwman, L. J., Brun, N. R., Behrens, P. & Vijver, M. G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226, 774–781 (2019).

    Article  CAS  Google Scholar 

  18. Liu, Y., Ma, W. H. & Wang, J. Theranostics of gold nanoparticles with an emphasis on photoacoustic imaging and photothermal therapy. Curr. Pharm. Des. 24, 2719–2728 (2018).

    Article  CAS  Google Scholar 

  19. Leblond, F., Davis, S. C., Valdes, P. A. & Pogue, B. W. Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J. Photochem. Photobiol. B 98, 77–94 (2010).

    Article  CAS  Google Scholar 

  20. Zheng, Q. & Lavis, L. D. Development of photostable fluorophores for molecular Imaging. Curr. Opin. Chem. Biol. 39, 32–38 (2017).

    Article  CAS  Google Scholar 

  21. González-Melendi, P. et al. Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann. Bot. 101, 187–195 (2008).

    Article  Google Scholar 

  22. Al-Sid-Cheikh, M. et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations. Environ. Sci. Technol. 52, 14480–14486 (2018).

    Article  CAS  Google Scholar 

  23. Mitrano, D. M. et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nat. Nanotechnol. 14, 362–368 (2019).

    Article  CAS  Google Scholar 

  24. Weissman, S. I. Intramolecular energy transfer the fluorescence of complexes of europium. J. Chem. Phys. 10, 214–215 (1942).

    Article  CAS  Google Scholar 

  25. Crawford, L., Higgins, J. & Putnam, D. A simple and sensitive method to quantify biodegradable nanoparticle biodistribution using europium chelate. Sci. Rep. 5, 13177 (2015).

    Article  Google Scholar 

  26. Facchetti, S. V. et al. Detection of metal-doped fluorescent PVC microplastics in freshwater mussels. Nanomaterials 10, 2363 (2020).

    Article  CAS  Google Scholar 

  27. Maghchiche, A., Haouam, A. & Immirzi, B. Use of polymers and biopolymers for water retaining and soil stabilization in arid and semiarid regions. J. Taibah. Univ. Sci. 4, 9–16 (2010).

    Article  Google Scholar 

  28. Weithmann, N. et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 04, eaap8060 (2018).

    Article  CAS  Google Scholar 

  29. Yang, J. et al. Microplastics in an agricultural soil following repeated application of three types of sewage sludge: a field study. Environ. Pollut. 289, 117943 (2021).

    Article  CAS  Google Scholar 

  30. Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 50, 5800–5808 (2016).

    Article  CAS  Google Scholar 

  31. Chen, Y. L., Leng, Y. F., Liu, X. N. & Wang, J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environ. Pollut. 257, 113449 (2019).

    Article  CAS  Google Scholar 

  32. Helcoski, R., Yonkos, L. T., Sanchez, A. & Baldwin, A. H. Wetland soil microplastics are negatively related to vegetation cover and stem density. Environ. Pollut. 256, 113391 (2020).

    Article  CAS  Google Scholar 

  33. Vukovic, S., Hay, B. P. & Bryantsev, V. S. Predicting stability constants for uranyl complexes using density functional theory. Inorg. Chem. 54, 3995–4001 (2015).

    Article  CAS  Google Scholar 

  34. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6169 (1999).

    Article  CAS  Google Scholar 

  35. Smith, R. M. & Martell, A. E. Critical Stability Constants Vol. 3 Other Organic Ligands 249 (Plenum, 1977).

  36. Song, B. et al. Background-free in-vivo imaging of vitamin C using time-gateable responsive probe. Sci. Rep. 5, 14194 (2015).

    Article  CAS  Google Scholar 

  37. Lenz, R., Enders, K. & Nielsen, T. G. Microplastic exposure studies should be environmentally realistic. Proc. Natl Acad. Sci. USA 113, E4121–E4122 (2016).

    CAS  Google Scholar 

  38. Latva, M. et al. Correlation between the lowest triplet state energy level of the ligand and lanthanide (III) luminescence quantum yield. J. Lumin. 75, 149–169 (1997).

    Article  CAS  Google Scholar 

  39. Wen, F. S., VanEtten, H. D., Tsaprailis, G. & Hawes, M. C. Extracellular proteins in pea root tip and border cell exudates. Plant Physiol. 143, 773–783 (2007).

    Article  CAS  Google Scholar 

  40. Burton, R. A., Gidley, M. J. & Fincher, G. B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 6, 724–732 (2010).

    Article  CAS  Google Scholar 

  41. Melby, L. R., Abramson, E., Caris, J. C. & Rose, N. J. Synthesis fluorescence of some trivalent lanthanide complexes. J. Am. Chem. Soc. 86, 5117–5125 (1964).

    Article  CAS  Google Scholar 

  42. Lu, S. L., Qu, R. J. & Forcada, J. Preparation of magnetic polymeric composite nanoparticles by seeded emulsion polymerization. Mater. Lett. 63, 770–772 (2009).

    Article  CAS  Google Scholar 

  43. Hoagland, D. R. & Arnon, D. I. The Water-Culture Method for Growing Plants without Soil. Circular No. 347 (Univ. of California, College of Agriculture, 1938).

  44. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

  45. Dunning Jr, T. H. & Hay, P. J. in Modern Theoretical Chemistry Vol. 3 (ed. Schaefer III, H. F.) 1–28 (Plenum, 1977).

  46. Frisch, M. J. et al. Gaussian 16 v.C.01 (Gaussian, 2016).

Download references

Acknowledgements

Y.L. gratefully acknowledges the Major Program of the National Natural Science Foundation of China (grant no. 41991330), the financial support by the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (grant no. QYZDJ-SSW-DQC015) and the National Nature Science Foundation of China (grant no. 41877142). L.L. acknowledges the National Nature Science Foundation of China (grant no. 42177040). W.J.G.M.P. benefited from the European Union’s Horizon 2020 research and innovation programme (PLASTICFATE, grant agreement no. 965367). We thank B. Song and J. Yuan at Dalian University of Technology for their kind help with the time-gated luminescence technique. We express our gratitude to C. Liu for his kind help in the calculation of the relative stability constants for metal complexes.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. managed the whole project, designed all the experiments and jointly wrote the manuscript. L.L. conducted the uptake experiments and wrote the manuscript. Y.F. measured the metal content in the particles and plants as well as the release of the Eu in the solutions. R.L. inspected the plant tissue using a confocal laser scanning microscope and time-gated luminescence imaging technique. J.Y. examined the samples with a scanning electron microscope and collected the images. R.L. and C.T. analysed the biological effect and analysed the enzyme activity. W.J.G.M.P. helped with manuscript revision and data analysis. All authors contributed to the results, discussion and manuscript writing.

Corresponding author

Correspondence to Yongming Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Nanotechnology thanks Ilaria Corsi, Livius Muff and Fabienne Schwab for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Tables 1–7.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Li, L., Feng, Y. et al. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nat. Nanotechnol. 17, 424–431 (2022). https://doi.org/10.1038/s41565-021-01063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01063-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research