Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides


van der Waals materials have greatly expanded our design space of heterostructures by allowing individual layers to be stacked at non-equilibrium configurations, for example via control of the twist angle. Such heterostructures not only combine characteristics of the individual building blocks, but can also exhibit physical properties absent in the parent compounds through interlayer interactions1. Here we report on a new family of nanometre-thick, two-dimensional (2D) ferroelectric semiconductors, where the individual constituents are well-studied non-ferroelectric monolayer transition metal dichalcogenides (TMDs), namely WSe2, MoSe2, WS2 and MoS2. By stacking two identical monolayer TMDs in parallel, we obtain electrically switchable rhombohedral-stacking configurations, with out-of-plane polarization that is flipped by in-plane sliding motion. Fabricating nearly parallel-stacked bilayers enables the visualization of moiré ferroelectric domains as well as electric field-induced domain wall motion with piezoelectric force microscopy. Furthermore, by using a nearby graphene electronic sensor in a ferroelectric field transistor geometry, we quantify the ferroelectric built-in interlayer potential, in good agreement with first-principles calculations. The new semiconducting ferroelectric properties of these four new TMDs opens up the possibility of studying the interplay between ferroelectricity and their rich electric and optical properties2,3,4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structures and piezoelectric force microscopy of bilayer TMDs.
Fig. 2: Hysteresis in R-stacked bilayer TMD devices.
Fig. 3: Electric field dependence of the polarization.
Fig. 4: Estimation of built-in interlayer potential in R-stacked bilayer TMDs and comparison with theory.

Similar content being viewed by others

Data availability

The data shown in the paper are available at Harvard Dataverse42.


  1. Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193–206 (2021).

    Article  CAS  Google Scholar 

  2. Sung, J. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 15, 750–754 (2020).

    Article  CAS  Google Scholar 

  3. Andersen, T. I. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 20, 480–487 (2021).

    Article  CAS  Google Scholar 

  4. Cui, C., Xue, F., Hu, W. J. & Li, L. J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. NPJ 2D Mater. Appl. 2, 18 (2018).

    Article  Google Scholar 

  5. Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).

    Article  CAS  Google Scholar 

  6. Xiao, D. et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  7. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  8. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  CAS  Google Scholar 

  9. Saito, Y. et al. Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat. Phys. 12, 144–149 (2016).

    Article  CAS  Google Scholar 

  10. Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    Article  CAS  Google Scholar 

  11. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Article  CAS  Google Scholar 

  12. Towle, L., Oberbeck, V., Brownt, B. E. & Stajdohar, R. E. Molybdenum diselenide: rhombohedral high pressure-high temperature polymorph. Science 154, 895–896 (1966).

    Article  CAS  Google Scholar 

  13. Suzuki, R. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 9, 611–617 (2014).

    Article  CAS  Google Scholar 

  14. Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    Article  CAS  Google Scholar 

  15. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    Article  CAS  Google Scholar 

  16. Park, J., Yeu, I. W., Han, G., Hwang, C. S. & Choi, J. H. Ferroelectric switching in bilayer 3R MoS2 via interlayer shear mode driven by nonlinear phononics. Sci. Rep. 9, 14919 (2019).

    Article  Google Scholar 

  17. Stern, M. V. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article  Google Scholar 

  18. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  CAS  Google Scholar 

  19. Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    Article  CAS  Google Scholar 

  20. Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019).

    Article  Google Scholar 

  21. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Article  CAS  Google Scholar 

  22. Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017).

    Article  CAS  Google Scholar 

  23. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article  CAS  Google Scholar 

  24. de la Barrera, S. C. et al. Direct measurement of ferroelectric polarization in a tunable semimetal. Nat. Commun. 12, 5298 (2021).

    Article  Google Scholar 

  25. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article  CAS  Google Scholar 

  26. Wu, M. Two-dimensional van der Waals ferroelectrics: scientific and technological opportunities. ACS Nano 15, 9229–9237 (2021).

  27. Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article  CAS  Google Scholar 

  28. Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).

    Article  CAS  Google Scholar 

  29. McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    Article  CAS  Google Scholar 

  30. Li, Y. et al. Unraveling intrinsic flexoelectricity in twisted double bilayer graphene. Preprint at (2021).

  31. Avsar, A. et al. Spin-orbit proximity effect in graphene. Nat. Commun. 5, 4875 (2014).

    Article  CAS  Google Scholar 

  32. Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    Article  CAS  Google Scholar 

  33. Zhang, Y., Liu, T. & Fu, L. Electronic structures, charge transfer, and charge order in twisted transition metal dichalcogenide bilayers. Phys. Rev. B. 103, 155142 (2021).

    Article  CAS  Google Scholar 

  34. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article  CAS  Google Scholar 

  35. Edelberg, D. et al. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett. 19, 4371–4379 (2019).

    Article  CAS  Google Scholar 

  36. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  37. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  39. Schutte, W. J., De Boer, J. L. & Jellinek, F. Crystal structures of tungsten disulfide and diselenide. J. Solid State Chem. 70, 207–209 (1987).

    Article  CAS  Google Scholar 

  40. Takeuchi, Y. & Nowacki, W. Detailed crystal structure of rhombohedral MoS2 and systematic deduction of possible polytypes of molybdenite. Schweiz. Miner. Petrog. 44, 105–120 (1964).

    CAS  Google Scholar 

  41. Ferreira, F., Enaldiev, V. V., Fal’ko, V. I. & Magorrian, S. J. Weak ferroelectric charge transfer in layer-asymmetric bilayers of 2D semiconductors. Sci. Rep. 11, 13422 (2021).

    Article  CAS  Google Scholar 

  42. Wang, X., Yasuda, K., Watanabe, K., Taniguchi, T. & Jarillo-Herrero. Replication Data for Interfacial Ferroelectricity in Rhombohedral-Stacked Bilayer Transition Metal Dichalcogenides (Harvard Dataverse, 2021);

Download references


We thank S. de la Barrera for fruitful discussions. This research was primarily supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under award number DE-SC0020149 (measurement, data analysis and DFT calculation), by the Center for the Advancement of Topological Semimetals, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, through the Ames Laboratory under contract no. DE-AC02-07CH11358 (device concept and design), by the Army Research Office (nanofabrication development) through grant no. W911NF1810316, and the Gordon and Betty Moore Foundations EPiQS Initiative through grant no. GBMF9463 to P.J-H. This work made use of the Materials Research Science and Engineering Center Shared Experimental Facilities supported by the National Science Foundation (NSF) (grant no. DMR-0819762). This work was performed in part at the Harvard University Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network, which is supported by the National Science Foundation under NSF ECCS award no. 1541959. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, grant number JPMXP0112101001, JSPS KAKENHI grant numbers JP20H00354 and the CREST(JPMJCR15F3). K.Y. acknowledges partial support by JSPS Overseas Research Fellowships. Synthesis of WSe2 and MoSe2 was supported by the NSF MRSEC programme through Columbia in the Center for Precision-Assembled Quantum Materials (grant no. DMR-2011738).

Author information

Authors and Affiliations



K.Y. designed and conceived the project. X.W. and K.Y. fabricated the devices and performed transport measurements. K.Y. performed PFM measurements. Y.Z. and L.F. performed the theoretical calculation. S.L. and J.H. grew the WSe2 and MoSe2 (used in device MoSe2 d1) crystals. K.W. and T.T. grew the BN crystal. X.W., K.Y., Y.Z. and P.J.-H. analysed the data and wrote the paper with the input from all the other authors.

Corresponding authors

Correspondence to Kenji Yasuda or Pablo Jarillo-Herrero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Nanotechnology thanks Laura Fumagalli, Jianhua Hao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Tables 1–3 and Figs. 1–24.

Supplementary Video 1

Large-scale lateral PFM images of MoSe2 device p2 under the sequence of gate voltages.

Supplementary Video 2

Large-scale lateral PFM images of MoSe2 device p3 under the sequence of gate voltages.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yasuda, K., Zhang, Y. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing