Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications

Abstract

Photoluminescent carbon nanoparticles, or carbon dots, are an emerging class of materials that has recently attracted considerable attention for biomedical and energy applications. They are defined by characteristic sizes of <10 nm, a carbon-based core and the possibility to add various functional groups at their surface for targeted applications. These nanomaterials possess many interesting physicochemical and optical properties, which include tunable light emission, dispersibility and low toxicity. In this Review, we categorize how chemical tools impact the properties of carbon dots. We look for pre- and postsynthetic approaches for the preparation of carbon dots and their derivatives or composites. We then showcase examples to correlate structure, composition and function and use them to discuss the future development of this class of nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of synthetic approaches and applications of CDs.
Fig. 2: Overview of multicolour FL of CDs from bottom-up syntheses.
Fig. 3: Overview of postsynthetic approaches to tune multicolour FL of CDs.
Fig. 4: Overview of pre- and postsynthetic strategies for enhancing CD applicability in energy applications.
Fig. 5: Overview of pre- and postsynthetic strategies to enhance CD applicability in biomedical applications.

Similar content being viewed by others

References

  1. Xu, X. et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736–12737 (2004).

    Article  CAS  Google Scholar 

  2. Sun, Y.-P. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006).

    Article  CAS  Google Scholar 

  3. Bourlinos, A. B. et al. Surface functionalized carbogenic quantum dots. Small 4, 455–458 (2008).

    Article  CAS  Google Scholar 

  4. Li, H. et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49, 4430–4434 (2010).

    Article  CAS  Google Scholar 

  5. Algar, W. R. et al. Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chem. Rev. 121, 9243–9358 (2021).

    Article  CAS  Google Scholar 

  6. Xia, C., Zhu, S., Feng, T., Yang, M. & Yang, B. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv. Sci. 6, 1901316 (2019).

    Article  CAS  Google Scholar 

  7. Baker, S. N. & Baker, G. A. Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010).

    Article  CAS  Google Scholar 

  8. Yao, B., Huang, H., Liu, Y. & Kang, Z. Carbon dots: a small conundrum. Trends Chem. 1, 235–246 (2019).

    Article  CAS  Google Scholar 

  9. Liu, J., Li, R. & Yang, B. Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 6, 2179–2195 (2020).

    Article  CAS  Google Scholar 

  10. Arcudi, F., Ðorđević, L. & Prato, M. Design, synthesis, and functionalization strategies of tailored carbon nanodots. Acc. Chem. Res. 52, 2070–2079 (2019).

    Article  CAS  Google Scholar 

  11. Miao, S. et al. Hetero-atom-doped carbon dots: doping strategies, properties and applications. Nano Today 33, 100879 (2020).

    Article  CAS  Google Scholar 

  12. Semeniuk, M. et al. Future perspectives and review on organic carbon dots in electronic applications. ACS Nano 13, 6224–6255 (2019).

    Article  CAS  Google Scholar 

  13. Hu, C., Li, M., Qiu, J. & Sun, Y. P. Design and fabrication of carbon dots for energy conversion and storage. Chem. Soc. Rev. 48, 2315–2337 (2019).

    Article  CAS  Google Scholar 

  14. Li, H. et al. Recent advances in carbon dots for bioimaging applications. Nanoscale Horiz. 5, 218–234 (2020).

    Article  CAS  Google Scholar 

  15. Chung, Y. J., Kim, J. & Park, C. B. Photonic carbon dots as an emerging nanoagent for biomedical and healthcare applications. ACS Nano 14, 6470–6497 (2020).

    Article  CAS  Google Scholar 

  16. Dhenadhayalan, N., Lin, K. C. & Saleh, T. A. Recent advances in functionalized carbon dots toward the design of efficient materials for sensing and catalysis applications. Small 16, 1905767 (2020).

    Article  CAS  Google Scholar 

  17. Liu, Y. et al. Advances in carbon dots: from the perspective of traditional quantum dots. Mater. Chem. Front. 4, 1586–1613 (2020).

    Article  CAS  Google Scholar 

  18. Yang, S. et al. C3N—a 2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties. Adv. Mater. 29, 1605625 (2017).

    Article  Google Scholar 

  19. Yuan, F. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 9, 2249 (2018).

    Article  Google Scholar 

  20. Soni, N. et al. Absorption and emission of light in red emissive carbon nanodots. Chem. Sci. 12, 3615–3626 (2021).

    Article  CAS  Google Scholar 

  21. Jiang, K. et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed. 54, 5360–5363 (2015).

    Article  CAS  Google Scholar 

  22. Ding, H. et al. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 14, 1800612 (2018).

    Article  Google Scholar 

  23. Moon, B. J. et al. Structure-controllable growth of nitrogenated graphene quantum dots via solvent catalysis for selective C–N bond activation. Nat. Commun. 12, 5879 (2021).

    Article  CAS  Google Scholar 

  24. Wang, L. et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 6, eabb6772 (2020).

    Article  CAS  Google Scholar 

  25. Wang, B. et al. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal. Adv. Sci. 8, 2001453 (2021).

    Article  CAS  Google Scholar 

  26. Liu, J. J. et al. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging. Small 14, 1703919 (2018).

    Article  Google Scholar 

  27. Wei, S. M. et al. ZnCl2 enabled synthesis of highly crystalline and emissive carbon dots with exceptional capability to generate O2. Matter 2, 495–506 (2020).

    Article  Google Scholar 

  28. Liu, K. K. et al. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv. Sci. 6, 1900766 (2019).

    Article  Google Scholar 

  29. Liang, W. et al. On the myth of ‘red/near-IR carbon quantum dots’ from thermal processing of specific colorless organic precursors. Nanoscale Adv. 3, 4186–4195 (2021).

    Article  CAS  Google Scholar 

  30. Holá, K. et al. Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 11, 12402–12410 (2017).

    Article  Google Scholar 

  31. Yan, Y. et al. van der Waals heterojunction between a bottom-up grown doped graphene quantum dot and graphene for photoelectrochemical water splitting. ACS Nano 14, 1185–1195 (2020).

    Article  CAS  Google Scholar 

  32. Do, S. et al. N,S-induced electronic states of carbon nanodots toward white electroluminescence. Adv. Opt. Mater. 4, 276–284 (2016).

    Article  CAS  Google Scholar 

  33. Ding, H., Yu, S.-B., Wei, J.-S. & Xiong, H.-M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10, 484–491 (2016).

    Article  CAS  Google Scholar 

  34. Nguyen, H. A., Srivastava, I., Pan, D. & Gruebele, M. Unraveling the fluorescence mechanism of carbon dots with sub-single-particle resolution. ACS Nano 14, 6127–6137 (2020).

    Article  CAS  Google Scholar 

  35. Miao, X. et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 30, 1704740 (2018).

    Article  Google Scholar 

  36. Singh, P. et al. Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem. Soc. Rev. 38, 2214–2230 (2009).

    Article  CAS  Google Scholar 

  37. Sweetman, M. J., Hickey, S. M., Brooks, D. A., Hayball, J. D. & Plush, S. E. A practical guide to prepare and synthetically modify graphene quantum dots. Adv. Funct. Mater. 29, 1808740 (2019).

    Article  Google Scholar 

  38. Tetsuka, H., Nagoya, A., Fukusumi, T. & Matsui, T. Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv. Mater. 28, 4632–4638 (2016).

    Article  CAS  Google Scholar 

  39. Yan, Y. et al. Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO2 reduction. ACS Nano 12, 3523–3532 (2018).

    Article  CAS  Google Scholar 

  40. Sekiya, R., Uemura, Y., Murakami, H. & Haino, T. White-light-emitting edge-functionalized graphene quantum dots. Angew. Chem. Int. Ed. 53, 5619–5623 (2014).

    Article  CAS  Google Scholar 

  41. Yamato, K., Sekiya, R., Suzuki, K. & Haino, T. Near-infrared-emitting nitrogen-doped nanographenes. Angew. Chem. Int. Ed. 58, 9022–9026 (2019).

    Article  CAS  Google Scholar 

  42. Kwon, W. et al. High color-purity green, orange, and red light-emitting diodes based on chemically functionalized graphene quantum dots. Sci. Rep. 6, 24205 (2016).

    Article  CAS  Google Scholar 

  43. Kim, J. K. et al. Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells. ACS Nano 7, 7207–7212 (2013).

    Article  CAS  Google Scholar 

  44. Chen, X. et al. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement. Adv. Funct. Mater. 26, 1719–1728 (2016).

    Article  CAS  Google Scholar 

  45. Hutton, G. A. M. et al. Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes. J. Am. Chem. Soc. 138, 16722–16730 (2016).

    Article  CAS  Google Scholar 

  46. Kim, J. et al. Biocatalytic C=C bond reduction through carbon nanodot-sensitized regeneration of NADH analogues. Angew. Chem. Int. Ed. 57, 13825–13828 (2018).

    Article  CAS  Google Scholar 

  47. Holá, K. et al. Carbon dots and [FeFe] hydrogenase biohybrid assemblies for efficient light-driven hydrogen evolution. ACS Catal. 10, 9943–9952 (2020).

    Article  Google Scholar 

  48. Martindale, B. C. M. et al. Enhancing light absorption and charge transfer efficiency in carbon dots through graphitization and core nitrogen doping. Angew. Chem. Int. Ed. 56, 6459–6463 (2017).

    Article  CAS  Google Scholar 

  49. Choi, Y., Jeon, D., Choi, Y., Ryu, J. & Kim, B.-S. Self-assembled supramolecular hybrid of carbon nanodots and polyoxometalates for visible-light-driven water oxidation. ACS Appl. Mater. Interfaces 10, 13434–13441 (2018).

    Article  CAS  Google Scholar 

  50. Achilleos, D. S. et al. Solar reforming of biomass with homogeneous carbon dots. Angew. Chem. Int. Ed. 59, 18184–18188 (2020).

    Article  CAS  Google Scholar 

  51. Rigodanza, F., Đorđević, L., Arcudi, F. & Prato, M. Customizing the electrochemical properties of carbon nanodots by using quinones in bottom-up synthesis. Angew. Chem. Int. Ed. 57, 5062–5067 (2018).

    Article  CAS  Google Scholar 

  52. Cailotto, S. et al. Carbon dots as photocatalysts for organic synthesis: metal-free methylene–oxygen-bond photocleavage. Green Chem. 22, 1145–1149 (2020).

    Article  Google Scholar 

  53. Wang, Y. et al. Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. Nat. Commun. 11, 2531 (2020).

    Article  CAS  Google Scholar 

  54. Bhattacharyya, S. et al. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots. Nat. Commun. 8, 1401 (2017).

    Article  Google Scholar 

  55. Fang, J. et al. Photobase effect for just-in-time delivery in photocatalytic hydrogen generation. Nat. Commun. 11, 5179 (2020).

    Article  CAS  Google Scholar 

  56. Gazzetto, M. et al. Photocycle of excitons in nitrogen-rich carbon nanodots: implications for photocatalysis and photovoltaics. ACS Appl. Nano Mater. 3, 6925–6934 (2020).

    Article  CAS  Google Scholar 

  57. Yeh, T.-F., Teng, C.-Y., Chen, S.-J. & Teng, H. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 26, 3297–3303 (2014).

    Article  CAS  Google Scholar 

  58. Liu, J. et al. Carbon nanodot surface modifications initiate highly efficient, stable catalysts for both oxygen evolution and reduction reactions. Adv. Energy Mater. 6, 1502039 (2016).

    Article  Google Scholar 

  59. Li, Q., Zhang, S., Dai, L. & Li, L. S. Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 134, 18932–18935 (2012).

    Article  CAS  Google Scholar 

  60. Li, Y. et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134, 15–18 (2012).

    Article  CAS  Google Scholar 

  61. Van Tam, T. et al. Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 5, 10537–10543 (2017).

    Article  Google Scholar 

  62. Wu, W. et al. Cu–N dopants boost electron transfer and photooxidation reactions of carbon dots. Angew. Chem. Int. Ed. 54, 6540–6544 (2015).

    Article  CAS  Google Scholar 

  63. Wu, W. et al. Synergies between unsaturated Zn/Cu doping sites in carbon dots provide new pathways for photocatalytic oxidation. ACS Catal. 8, 747–753 (2018).

    Article  CAS  Google Scholar 

  64. Li, H. et al. Carbon quantum dots with photo-generated proton property as efficient visible light controlled acid catalyst. Nanoscale 6, 867–873 (2014).

    Article  CAS  Google Scholar 

  65. Han, Y. et al. Carbon quantum dots with photoenhanced hydrogen-bond catalytic activity in aldol condensations. ACS Catal. 4, 781–787 (2014).

    Article  CAS  Google Scholar 

  66. Filippini, G., Prato, M. & Rosso, C. Carbon dots as nano-organocatalysts for synthetic applications. ACS Catal. 10, 8090–8105 (2020).

    Article  Google Scholar 

  67. Li, H. et al. Sulfated carbon quantum dots as efficient visible-light switchable acid catalysts for room-temperature ring-opening reactions. Angew. Chem. Int. Ed. 54, 8420–8424 (2015).

    Article  CAS  Google Scholar 

  68. Pei, X. et al. Reversible phase transfer of carbon dots between an organic phase and aqueous solution triggered by CO2. Angew. Chem. Int. Ed. 57, 3687–3691 (2018).

    Article  CAS  Google Scholar 

  69. Chen, L. C. et al. Synergy between quantum confinement and chemical functionality of graphene dots promotes photocatalytic H2 evolution. J. Mater. Chem. A 6, 18216–18224 (2018).

    Article  CAS  Google Scholar 

  70. Qu, S. et al. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv. Mater. 28, 3516–3521 (2016).

    Article  CAS  Google Scholar 

  71. Yuan, F. et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 29, 1604436 (2017).

    Article  Google Scholar 

  72. Jia, H. et al. Electroluminescent warm white light‐emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots. Adv. Sci. 6, 1900397 (2019).

    Article  Google Scholar 

  73. Wolk, A. et al. A novel lubricant based on covalent functionalized graphene oxide quantum dots. Sci. Rep. 8, 5843 (2018).

    Article  Google Scholar 

  74. Zhou, Y. et al. Colloidal carbon dots based highly stable luminescent solar concentrators. Nano Energy 44, 378–387 (2018).

    Article  CAS  Google Scholar 

  75. Miltenburg, M. B., Schon, T. B., Kynaston, E. L., Manion, J. G. & Seferos, D. S. Electrochemical polymerization of functionalized graphene quantum dots. Chem. Mater. 29, 6611–6615 (2017).

    Article  CAS  Google Scholar 

  76. Bhattacharya, S. et al. Fluorescent self-healing carbon dot/polymer gels. ACS Nano 13, 1433–1442 (2019).

    CAS  Google Scholar 

  77. Ðorđević, L., Arcudi, F. & Prato, M. Preparation, functionalization and characterization of engineered carbon nanodots. Nat. Protocols 14, 2931–2953 (2019).

    Article  Google Scholar 

  78. Cacioppo, M. et al. Symmetry-breaking charge-transfer chromophore interactions supported by carbon nanodots. Angew. Chem. Int. Ed. 59, 12779–12784 (2020).

    Article  CAS  Google Scholar 

  79. Carrara, S., Arcudi, F., Prato, M. & De Cola, L. Amine-rich nitrogen-doped carbon nanodots as a platform for self-enhancing electrochemiluminescence. Angew. Chem. Int. Ed. 56, 4757–4761 (2017).

    Article  CAS  Google Scholar 

  80. Đorđević, L. et al. Synthesis and excited state processes of arrays containing amine-rich carbon dots and unsymmetrical rylene diimides. Mater. Chem. Front. 4, 3640–3648 (2020).

    Article  Google Scholar 

  81. Arcudi, F. et al. Porphyrin antennas on carbon nanodots: excited state energy and electron transduction. Angew. Chem. Int. Ed. 56, 12097–12101 (2017).

    Article  CAS  Google Scholar 

  82. Yang, S. et al. Selenium doped graphene quantum dots as an ultrasensitive redox fluorescent switch. Chem. Mater. 27, 2004–2011 (2015).

    Article  CAS  Google Scholar 

  83. Wang, Y. et al. Multicenter-emitting carbon dots: color tunable fluorescence and dynamics monitoring oxidative stress in vivo. Chem. Mater. 32, 8146–8157 (2020).

    Article  CAS  Google Scholar 

  84. Xu, Y. et al. Reduced carbon dots versus oxidized carbon dots: photo- and electrochemiluminescence investigations for selected applications. Chem. Eur. J. 19, 6282–6288 (2013).

    Article  CAS  Google Scholar 

  85. Yuan, F. et al. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nat. Photon. 14, 171–176 (2020).

    Article  CAS  Google Scholar 

  86. Zhang, H. et al. Carbon dots in porous materials: host–guest synergy for enhanced performance. Angew. Chem. Int. Ed. 59, 19390–19402 (2020).

    Article  CAS  Google Scholar 

  87. Du, X. Y., Wang, C. F., Wu, G. & Chen, S. The rapid and large-scale production of carbon quantum dots and their integration with polymers. Angew. Chem. Int. Ed. 60, 8585–8595 (2021).

    Article  CAS  Google Scholar 

  88. Rizzo, C. et al. Nitrogen-doped carbon nanodots-ionogels: preparation, characterization, and radical scavenging activity. ACS Nano 12, 1296–1305 (2018).

    Article  CAS  Google Scholar 

  89. Zhao, S. et al. Enhanced activity for CO2 electroreduction on a highly active and stable ternary Au-CDots-C3N4 electrocatalyst. ACS Catal. 8, 188–197 (2018).

    Article  CAS  Google Scholar 

  90. Wang, Y., Godin, R., Durrant, J. R. & Tang, J. Efficient hole trapping in carbon dot/oxygen‐modified carbon nitride heterojunction photocatalysts for enhanced methanol production from CO2 under neutral conditions. Angew. Chem. Int. Ed. 60, 20811–20816 (2021).

    Article  CAS  Google Scholar 

  91. Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

    Article  CAS  Google Scholar 

  92. Guo, S. et al. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas. Nat. Commun. 8, 1828 (2017).

    Article  Google Scholar 

  93. Wu, Q. et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat. Commun. 12, 483 (2021).

    Article  CAS  Google Scholar 

  94. Zhu, C. et al. Carbon dots as fillers inducing healing/self-healing and anticorrosion properties in polymers. Adv. Mater. 29, 1701399 (2017).

    Article  Google Scholar 

  95. Liang, Y. C. et al. Lifetime-engineered carbon nanodots for time division duplexing. Adv. Sci. 8, 2003433 (2021).

    Article  CAS  Google Scholar 

  96. Xu, A. et al. Carbon‐based quantum dots with solid‐state photoluminescent: mechanism, implementation, and application. Small 16, 2004621 (2020).

    Article  CAS  Google Scholar 

  97. Tian, Z. et al. Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv. Opt. Mater. 5, 1700416 (2017).

    Article  Google Scholar 

  98. Wang, F., Xie, Z., Zhang, H., Liu, C. Y. & Zhang, Y. G. Highly luminescent organosilane-functionalized carbon dots. Adv. Funct. Mater. 21, 1027–1031 (2011).

    Article  CAS  Google Scholar 

  99. Li, W. et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 30, 1800676 (2018).

    Article  Google Scholar 

  100. Tang, D. et al. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 6, 7918–7925 (2014).

    Article  CAS  Google Scholar 

  101. Wei, J.-S. et al. Carbon dots/NiCo2O4 nanocomposites with various morphologies for high performance supercapacitors. Small 12, 5927–5934 (2016).

    Article  CAS  Google Scholar 

  102. Jin, S. et al. A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts. Angew. Chem. Int. Ed. 59, 21885–21889 (2020).

    Article  CAS  Google Scholar 

  103. Hu, C. et al. Nitrogen-doped carbon dots decorated on graphene: a novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction. Chem. Commun. 51, 3419–3422 (2015).

    Article  CAS  Google Scholar 

  104. Jiang, K., Wang, Y., Cai, C. & Lin, H. Activating room temperature long afterglow of carbon dots via covalent fixation. Chem. Mater. 29, 4866–4873 (2017).

    Article  CAS  Google Scholar 

  105. Jiang, K., Wang, Y., Cai, C. & Lin, H. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv. Mater. 30, 1800783 (2018).

    Article  Google Scholar 

  106. Jiang, K. et al. Carbon dots with dual-emissive, robust, and aggregation-induced room-temperature phosphorescence characteristics. Angew. Chem. Int. Ed. 59, 1263–1269 (2020).

    Article  CAS  Google Scholar 

  107. Zheng, Y. et al. Near‐infrared‐excited multicolor afterglow in carbon dots‐based room‐temperature afterglow materials. Angew. Chem. Int. Ed. 60, 22253–22259 (2021).

    Article  CAS  Google Scholar 

  108. Wang, B. et al. Carbon dots in a matrix: energy-transfer-enhanced room-temperature red phosphorescence. Angew. Chem. Int. Ed. 58, 18443–18448 (2019).

    Article  CAS  Google Scholar 

  109. Gao, Y. et al. Strategy for activating room-temperature phosphorescence of carbon dots in aqueous environments. Chem. Mater. 31, 7979–7986 (2019).

    Article  CAS  Google Scholar 

  110. Li, Z., Wang, L., Li, Y., Feng, Y. & Feng, W. Frontiers in carbon dots: design, properties and applications. Mater. Chem. Front. 3, 2571–2601 (2019).

    Article  CAS  Google Scholar 

  111. Liu, Y. et al. Photo-induced ultralong phosphorescence of carbon dots for thermally sensitive dynamic patterning. Chem. Sci. 12, 8199–8206 (2021).

    Article  CAS  Google Scholar 

  112. Yu, H. et al. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2, 3344–3351 (2014).

    Article  CAS  Google Scholar 

  113. Xu, C. et al. Sulfur-doped graphitic carbon nitride decorated with graphene quantum dots for an efficient metal-free electrocatalyst. J. Mater. Chem. A 3, 1841–1846 (2015).

    Article  CAS  Google Scholar 

  114. Yang, C. et al. Nitrogen-doped carbon dots with excitation-independent long-wavelength emission produced by a room-temperature reaction. Chem. Commun. 52, 11912–11914 (2016).

    Article  CAS  Google Scholar 

  115. Geng, B. et al. NIR-responsive carbon dots for efficient photothermal cancer therapy at low power densities. Carbon 134, 153–162 (2018).

    Article  CAS  Google Scholar 

  116. Ge, J. et al. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv. Mater. 27, 4169–4177 (2015).

    Article  CAS  Google Scholar 

  117. Lan, M. et al. Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res. 10, 3113–3123 (2017).

    Article  CAS  Google Scholar 

  118. Hasan, M. T. et al. Rare-earth metal ions doped graphene quantum dots for near-IR in vitro/in vivo/ex vivo imaging applications. Adv. Opt. Mater. 8, 2000897 (2020).

    Article  CAS  Google Scholar 

  119. Zheng, M. et al. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Appl. Mater. Interfaces 8, 23533–23541 (2016).

    Article  CAS  Google Scholar 

  120. Bao, X. et al. In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light Sci. Appl. 7, 91 (2018).

    Article  Google Scholar 

  121. Li, Y., Bai, G., Zeng, S. & Hao, J. Theranostic carbon dots with innovative NIR-II emission for in vivo renal-excreted optical imaging and photothermal therapy. ACS Appl. Mater. Interfaces 11, 4737–4744 (2019).

    Article  CAS  Google Scholar 

  122. Jiang, L. et al. UV–Vis–NIR full-range responsive carbon dots with large multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo. Small 16, 2000680 (2020).

    Article  CAS  Google Scholar 

  123. Ge, J. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5, 4596 (2014).

    Article  CAS  Google Scholar 

  124. Shen, Y., Shuhendler, A. J., Ye, D., Xu, J. J. & Chen, H. Y. Two-photon excitation nanoparticles for photodynamic therapy. Chem. Soc. Rev. 45, 6725–6741 (2016).

    Article  CAS  Google Scholar 

  125. Kuo, W. S. et al. Two-photon photoexcited photodynamic therapy and contrast agent with antimicrobial graphene quantum dots. ACS Appl. Mater. Interfaces 8, 30467–30474 (2016).

    Article  CAS  Google Scholar 

  126. Ge, J. et al. Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo. Adv. Healthc. Mater. 5, 665–675 (2016).

    Article  CAS  Google Scholar 

  127. Guo, X. L. et al. A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies. Carbon 134, 519–530 (2018).

    Article  CAS  Google Scholar 

  128. Lan, M. et al. Carbon dots as multifunctional phototheranostic agents for photoacoustic/fluorescence imaging and photothermal/photodynamic synergistic cancer therapy. Adv. Ther. 1, 1800077 (2018).

    Article  Google Scholar 

  129. Anwar, S. et al. Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Appl. Bio Mater. 2, 2317–2338 (2019).

    Article  Google Scholar 

  130. Bourlinos, A. B. et al. Gd(III)-doped carbon dots as a dual fluorescent–MRI probe. J. Mater. Chem. 22, 23327–23330 (2012).

    Article  CAS  Google Scholar 

  131. Bouzas-Ramos, D. et al. Carbon quantum dots codoped with nitrogen and lanthanides for multimodal imaging. Adv. Funct. Mater. 29, 1903884 (2019).

    Article  Google Scholar 

  132. Chen, H. et al. Gadolinium-encapsulated graphene carbon nanotheranostics for imaging-guided photodynamic therapy. Adv. Mater. 30, 1802748 (2018).

    Article  Google Scholar 

  133. Wang, H. et al. Paramagnetic properties of metal-free boron-doped graphene quantum dots and their application for safe magnetic resonance imaging. Adv. Mater. 29, 1605416 (2017).

    Article  Google Scholar 

  134. Zhang, J. et al. Carbon dots as a new class of diamagnetic chemical exchange saturation transfer (diaCEST) MRI contrast agents. Angew. Chem. Int. Ed. 58, 9871–9875 (2019).

    Article  CAS  Google Scholar 

  135. Wang, Z. et al. Carbon dots induce epithelial–mesenchymal transition for promoting cutaneous wound healing via activation of TGF-β/p38/Snail pathway. Adv. Funct. Mater. 30, 2004886 (2020).

    Article  CAS  Google Scholar 

  136. Li, S. et al. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat. Biomed. Eng. 4, 704–716 (2020).

    Article  CAS  Google Scholar 

  137. Das, A. et al. Chiral carbon dots based on l/d-cysteine produced via room temperature surface modification and one-pot carbonization. Nanoscale 13, 8058–8066 (2021).

    Article  CAS  Google Scholar 

  138. Li, F. et al. Chiral carbon dots mimicking topoisomerase I to mediate the topological rearrangement of supercoiled DNA enantioselectively. Angew. Chem. Int. Ed. 59, 11087–11092 (2020).

    Article  CAS  Google Scholar 

  139. Li, F. et al. Highly fluorescent chiral N-S-doped carbon dots from cysteine: affecting cellular energy metabolism. Angew. Chem. Int. Ed. 57, 2377–2382 (2018).

    Article  CAS  Google Scholar 

  140. Ðorđević, L. et al. Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nat. Commun. 9, 3442 (2018).

    Article  Google Scholar 

  141. Arcudi, F. et al. Lighting up the electrochemiluminescence of carbon dots through pre- and post-synthetic design. Adv. Sci. 8, 2100125 (2021).

    Article  CAS  Google Scholar 

  142. Jian, H. J. et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano 11, 6703–6716 (2017).

    Article  CAS  Google Scholar 

  143. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    Article  CAS  Google Scholar 

  144. Hassan, S. & Singh, A. V. Biophysicochemical perspective of nanoparticle compatibility: a critically ignored parameter in nanomedicine. J. Nanosci. Nanotechnol. 14, 402–414 (2014).

    Article  CAS  Google Scholar 

  145. Unnikrishnan, B., Wu, R. S., Wei, S. C., Huang, C. C. & Chang, H. T. Fluorescent carbon dots for selective labeling of subcellular organelles. ACS Omega 5, 11248–11261 (2020).

    Article  CAS  Google Scholar 

  146. Pang, W. et al. Nucleolus-targeted photodynamic anticancer therapy using renal-clearable carbon dots. Adv. Healthc. Mater. 9, 2000607 (2020).

    Article  CAS  Google Scholar 

  147. Rosenkrans, Z. T. et al. Selenium-doped carbon quantum dots act as broad-spectrum antioxidants for acute kidney injury management. Adv. Sci. 7, 2000420 (2020).

    Article  CAS  Google Scholar 

  148. Sun, S. et al. Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power. ACS Appl. Mater. Interfaces 11, 5791–5803 (2019).

    Article  CAS  Google Scholar 

  149. Liu, R. et al. Aptamer and IR820 dual-functionalized carbon dots for targeted cancer therapy against hypoxic tumors based on an 808 nm laser-triggered three-pathway strategy. Adv. Ther. 1, 1800041 (2018).

    Article  Google Scholar 

  150. Chung, Y. J. et al. Photomodulating carbon dots for spatiotemporal suppression of Alzheimer’s β-amyloid aggregation. ACS Nano 14, 16973–16983 (2020).

    Article  CAS  Google Scholar 

  151. Yu, Y. et al. Bortezomib-encapsulated CuS/carbon dot nanocomposites for enhanced photothermal therapy via stabilization of polyubiquitinated substrates in the proteasomal degradation pathway. ACS Nano 14, 10688–10703 (2020).

    Article  CAS  Google Scholar 

  152. Zhang, X. et al. Carbon nitride hollow theranostic nanoregulators executing laser-activatable water splitting for enhanced ultrasound/fluorescence imaging and cooperative phototherapy. ACS Nano 14, 4045–4060 (2020).

    Article  CAS  Google Scholar 

  153. Li, D. et al. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light Sci. Appl. 5, e16120–e16120 (2016).

    Article  CAS  Google Scholar 

  154. Xu, G. et al. In vivo tumor photoacoustic imaging and photothermal therapy based on supra-(carbon nanodots). Adv. Healthc. Mater. 8, 1800995 (2019).

    Article  Google Scholar 

  155. Liang, Y.-C. et al. Phosphorescent carbon-nanodots-assisted Förster resonant energy transfer for achieving red afterglow in an aqueous solution. ACS Nano 15, 16242–16254 (2021).

    Article  CAS  Google Scholar 

  156. Geng, B. et al. Carbon dot-sensitized MoS2 nanosheet heterojunctions as highly efficient NIR photothermal agents for complete tumor ablation at an ultralow laser exposure. Nanoscale 11, 7209–7220 (2019).

    Article  CAS  Google Scholar 

  157. Jia, Q. et al. Self-assembled carbon dot nanosphere: a robust, near-infrared light-responsive, and vein injectable photosensitizer. Adv. Healthc. Mater. 6, 1601419 (2017).

    Article  Google Scholar 

  158. Guan, M. et al. A versatile and clearable nanocarbon theranostic based on carbon dots and gadolinium metallofullerene nanocrystals. Adv. Healthc. Mater. 5, 2283–2294 (2016).

    Article  CAS  Google Scholar 

  159. Wang, H. et al. Biocompatible PEG-chitosan@carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy. Adv. Funct. Mater. 25, 5537–5547 (2015).

    Article  CAS  Google Scholar 

  160. Sun, S. et al. Tumor microenvironment stimuli‐responsive fluorescence imaging and synergistic cancer therapy by carbon‐dot–Cu2+ nanoassemblies. Angew. Chem. Int. Ed. 59, 21041–21048 (2020).

    Article  CAS  Google Scholar 

  161. Hou, L. et al. Transformable honeycomb-like nanoassemblies of carbon dots for regulated multisite delivery and enhanced antitumor chemoimmunotherapy. Angew. Chem. Int. Ed. 60, 6581–6592 (2021).

    Article  CAS  Google Scholar 

  162. Gong, N. et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotechnol. 14, 379–387 (2019).

    Article  CAS  Google Scholar 

  163. Zhao, H. et al. Microenvironment-driven cascaded responsive hybrid carbon dots as a multifunctional theranostic nanoplatform for imaging-traceable gene precise delivery. Chem. Mater. 30, 3438–3453 (2018).

    Article  CAS  Google Scholar 

  164. Jia, Q. et al. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 30, 1706090 (2018).

    Article  Google Scholar 

  165. Zhi, B. et al. Multicolor polymeric carbon dots: synthesis, separation and polyamide-supported molecular fluorescence. Chem. Sci. 12, 2441–2455 (2021).

    Article  CAS  Google Scholar 

  166. Han, Y. et al. Machine-learning-driven synthesis of carbon dots with enhanced quantum yields. ACS Nano 14, 14761–14768 (2020).

    Article  Google Scholar 

  167. Wang, X. et al. Carbon-dot-based white-light-emitting diodes with adjustable correlated color temperature guided by machine learning. Angew. Chem. Int. Ed. 60, 12585–12590 (2021).

    Article  CAS  Google Scholar 

  168. Meng, W. et al. Biomass-derived carbon dots and their applications. Energy Environ. Mater. 2, 172–192 (2019).

    Article  CAS  Google Scholar 

  169. Hansen, S. F., Hansen, O. F. H. & Nielsen, M. B. Advances and challenges towards consumerization of nanomaterials. Nat. Nanotechnol. 15, 964–965 (2020).

    Article  CAS  Google Scholar 

  170. Qu, D. & Sun, Z. The formation mechanism and fluorophores of carbon dots synthesized: via a bottom-up route. Mater. Chem. Front. 4, 400–420 (2020).

    Article  CAS  Google Scholar 

  171. Rigodanza, F. et al. Snapshots into carbon dots formation through a combined spectroscopic approach. Nat. Commun. 12, 2640 (2021).

    Article  CAS  Google Scholar 

  172. de Boëver, R., Langlois, A., Li, X. & Claverie, J. P. Graphitic dots combining photophysical characteristics of organic molecular fluorophores and inorganic quantum dots. JACS Au 1, 843–851 (2021).

    Article  Google Scholar 

  173. Sun, S., Zhang, L., Jiang, K., Wu, A. & Lin, H. Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem. Mater. 28, 8659–8668 (2016).

    Article  CAS  Google Scholar 

  174. Zhang, L., Lin, Z., Yu, Y. X., Jiang, B. P. & Shen, X. C. Multifunctional hyaluronic acid-derived carbon dots for self-targeted imaging-guided photodynamic therapy. J. Mater. Chem. B 6, 6534–6543 (2018).

    Article  CAS  Google Scholar 

  175. Huang, D. et al. Bottom-up synthesis and structural design strategy for graphene quantum dots with tunable emission to near infrared region. Carbon 142, 673–684 (2019).

    Article  CAS  Google Scholar 

  176. Misra, S. K. et al. Carbon dots with induced surface oxidation permits imaging at single-particle level for intracellular studies. Nanoscale 10, 18510–18519 (2018).

    Article  CAS  Google Scholar 

  177. Zeng, Q., Feng, T., Tao, S., Zhu, S. & Yang, B. Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light Sci. Appl. 10, 142 (2021).

    Article  CAS  Google Scholar 

  178. Zhu, S. et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8, 355–381 (2015).

    Article  CAS  Google Scholar 

  179. Ren, J., Malfatti, L. & Innocenzi, P. Citric acid derived carbon dots, the challenge of understanding the synthesis–structure relationship. C 7, 2 (2020).

    Google Scholar 

  180. Wei, S. et al. Multi-color fluorescent carbon dots: graphitized sp2 conjugated domains and surface state energy level co-modulate band gap rather than size effects. Chem. Eur. J. 26, 8129–8136 (2020).

    Article  CAS  Google Scholar 

  181. Zhu, S. et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52, 3953–3957 (2013).

    Article  CAS  Google Scholar 

  182. Essner, J. B., Kist, J. A., Polo-Parada, L. & Baker, G. A. Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chem. Mater. 30, 1878–1887 (2018).

    Article  CAS  Google Scholar 

  183. Ragazzon, G. et al. Optical processes in carbon nanocolloids. Chem 7, 606–628 (2021).

    Article  CAS  Google Scholar 

  184. Zhao, Q., Song, W., Zhao, B. & Yang, B. Spectroscopic studies of the optical properties of carbon dots: recent advances and future prospects. Mater. Chem. Front. 4, 472–488 (2020).

    Article  CAS  Google Scholar 

  185. Wei, K. et al. Simple semiempirical method for the location determination of HOMO and LUMO of carbon dots. J. Phys. Chem. C. 125, 7451–7457 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the University of Trieste, INSTM, AXA Research Fund, the Italian Ministry of Education MIUR (cofin Prot. 2017PBXPN4), the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (MDM‐2017‐0720) and the European Research Council (ERC-AdG-2019 no. 885323). We thank G. Graziano for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luka Ðorđević, Francesca Arcudi or Maurizio Prato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Andrey Rogach, Bai Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ðorđević, L., Arcudi, F., Cacioppo, M. et al. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 17, 112–130 (2022). https://doi.org/10.1038/s41565-021-01051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01051-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing