Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The path to scalable quantum computing with silicon spin qubits

Silicon spin qubits have demonstrated some promising properties at the individual level, but the technology is beleaguered by a late start and high barriers to entry. To overcome these challenges, the quantum computing and electrical engineering communities will need to find novel ways to work together.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: How Si qubits could benefit from looking to CMOS to scale up.

References

  1. IBM Unveils a Quantum Computing Roadmap that Will Take Them to One Million Qubits and Beyond (Quantum Computing Report, 2021); https://quantumcomputingreport.com/ibm-unveils-a-quantum-computing-roadmap-that-will-take-them-to-onemillion-qubits-and-beyond/

  2. Rigetti Computing Introduces World’s First Scalable Multi-chip Quantum Processor (Rigetti Computing, 2021); https://www.globenewswire.com/news-release/2021/06/29/2255028/0/en/Rigetti-Computing-introduces-world-s-first-scalablemulti-chip-quantum-processor.html

  3. Veldhorst, M. et al. Nature 526, 410–414 (2015).

    CAS  Article  Google Scholar 

  4. Hendrickx, N. W. et al. Nature 591, 580–585 (2021).

    CAS  Article  Google Scholar 

  5. Stano, P. & Loss, D. Preprint at https://arxiv.org/abs/2107.06485 (2021).

  6. Huang, W. et al. Nature 569, 532–536 (2019).

    CAS  Article  Google Scholar 

  7. Xue, X. et al. Preprint at https://arxiv.org/abs/2107.00628 (2021).

  8. Fowler, A. G. et al. Phys. Rev. A 86, 032324 (2012).

    Article  Google Scholar 

  9. Vinet, M. et al. Towards scalable silicon quantum computing. In 2018 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2018).

  10. Petit, L. et al. Nature 580, 355–359 (2020).

    CAS  Article  Google Scholar 

  11. Pla, J. J. et al. Nature 489, 541–545 (2012).

    CAS  Article  Google Scholar 

  12. Maurand, R. et al. Nat. Commun. 7, 13575 (2016).

    CAS  Article  Google Scholar 

  13. Nakamura, Y., Pashkin, Y. & Tsai, J. Nature 398, 786–788 (1999).

    CAS  Article  Google Scholar 

  14. Loss, D. & DiVincenzo, D. Phys. Rev. A 57, 120 (1998).

    CAS  Article  Google Scholar 

  15. Petta, J. R. et al. Science 309, 2180–2184 (2005).

    CAS  Article  Google Scholar 

  16. Meunier, T. et al. Qubit read-out in semiconductor quantum processors: challenges and perspectives. In 2019 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2019).

  17. Le Guevel, L. et al. Appl. Phys. Rev. 7, 041407 (2020).

    Article  Google Scholar 

  18. Intel’s 10 nm Technology: Delivering the Highest Logic Transistor Density in the Industry Through the Use of Hyper Scaling (Intel, 2017); https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/09/10-nm-icf-fact-sheet.pdf

  19. Mazzocchi, V. et al. J. Cryst. Growth https://doi.org/10.1016/j.jcrysgro.2018.12.010 (2019).

  20. Thorbeck, T. & Zimmerman, N. M. AIP Adv. 5, 087107 (2015).

    Article  Google Scholar 

  21. Zhang, Q. et al. IEEE Trans. Electron Devices https://doi.org/10.1109/TED.2013.2295715 (2014).

  22. Gargini, P. Roadmap Past, Present and Future. In Proc. Surface Preparation and Cleaning Conference, keynote presentation (SPCC, 2016).

  23. Langione, M. et al. Where Will Quantum Computers Create Value—and When? (BCG, 2019); https://www.bcg.com/ennl/publications/2019/quantum-computers-create-value-when

  24. Vandersypen, L. & van Leeuwenhoek, A. Quantum computing - the next challenge in circuit and system design. In 2017 IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, 2017).

  25. Niquet, Y. M. et al. Challenges and perspectives in the modeling of spin qubits. In 2020 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2020).

Download references

Acknowledgements

I would like to thank my close colleagues F. Perruchot and T. Meunier for our fruitful discussions and their contribution to this comment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maud Vinet.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vinet, M. The path to scalable quantum computing with silicon spin qubits. Nat. Nanotechnol. 16, 1296–1298 (2021). https://doi.org/10.1038/s41565-021-01037-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01037-5

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research