Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interfacial-engineering-enabled practical low-temperature sodium metal battery

Abstract

Solid-state sodium (Na) batteries have received extensive attention as a promising alternative to room-temperature liquid electrolyte Na-ion batteries and high-temperature liquid electrode Na–S batteries because of safety concerns. However, the major issues for solid-state Na batteries are a high interfacial resistance between solid electrolytes and electrodes, and Na dendrite growth. Here we report that a yttria-stabilized zirconia (YSZ)-enhanced beta-alumina solid electrolyte (YSZ@BASE) has an extremely low interface impedance of 3.6 Ω cm2 with the Na metal anode at 80 °C, and also exhibits an extremely high critical current density of ~7.0 mA cm–2 compared with those of other Li- and Na-ion solid electrolytes reported so far. With a trace amount of eutectic NaFSI–KFSI molten salt at the electrolyte/cathode interface, a quasi-solid-state Na/YSZ@BASE/NaNi0.45Cu0.05Mn0.4Ti0.1O2 full cell achieves a high capacity of 110 mAh g–1 with a Coulombic efficiency >99.99% and retains 73% of the cell capacity over 500 cycles at 4C and 80 °C. Extensive characterizations and theoretical calculations prove that the stable β-NaAlO2-rich solid–electrolyte interphase and strong YSZ support matrix play a critical role in suppressing the Na dendrite as they maintain robust interfacial contacts, lower electronic conduction and prevent the continual reduction of BASE through oxygen-ion compensation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of YSZ@BASE.
Fig. 2: Characterization of the YSZ@BASE/Na interface at RT and 80 °C.
Fig. 3: Fundamentals of YSZ@BASE/Na metal interfacial reaction at 80 °C.
Fig. 4: Dendrite suppression capability and interface chemistry of YSZ@BASE at 80 °C.
Fig. 5: Stability mechanism of YSZ@BASE/Na interface at 80 °C.
Fig. 6: Demonstration of a high-voltage cell with a YSZ@BASE and Na anode.

Similar content being viewed by others

Data availability

All relevant data that support the plots within this article and other findings of this study are available from the corresponding authors upon request.

References

  1. Tarascon, J. M. Is lithium the new gold? Nat. Chem. 2, 510 (2010).

    Article  CAS  Google Scholar 

  2. Slater, M. D., Kim, D., Lee, E. & Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013).

    Article  CAS  Google Scholar 

  3. Fan, X. et al. High-performance all-solid-state Na–S battery enabled by casting–annealing technology. ACS Nano 12, 3360–3368 (2018).

    Article  CAS  Google Scholar 

  4. Zhou, W., Li, Y., Xin, S. & Goodenough, J. B. Rechargeable sodium all-solid-state battery. ACS Cent. Sci. 3, 52–57 (2017).

    Article  CAS  Google Scholar 

  5. Zhao, C. et al. Solid-state sodium batteries. Adv. Energy Mater. 8, 1703012 (2018).

    Article  Google Scholar 

  6. Goodenough, J. B., Hong, H.-P. & Kafalas, J. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976).

    Article  CAS  Google Scholar 

  7. Lu, Y., Li, L., Zhang, Q., Niu, Z. & Chen, J. Electrolyte and interface engineering for solid-state sodium batteries. Joule 2, 1747–1770 (2018).

    Article  CAS  Google Scholar 

  8. Hou, W. et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: progress and perspective. Nano Energy 52, 279–291 (2018).

    Article  CAS  Google Scholar 

  9. Hayashi, A., Noi, K., Sakuda, A. & Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012).

    Article  Google Scholar 

  10. Berbano, S. S., Seo, I., Bischoff, C. M., Schuller, K. E. & Martin, S. W. Formation and structure of Na2S + P2S5 amorphous materials prepared by melt-quenching and mechanical milling. J. Non Cryst. Solids 358, 93–98 (2012).

    Article  CAS  Google Scholar 

  11. Heo, J. W., Banerjee, A., Park, K. H., Jung, Y. S. & Hong, S.-T. New Na-ion solid electrolytes Na4–xSn1−xSbxS4 (0.02 ≤ x ≤ 0.33) for all-solid-state Na-ion batteries. Adv. Energy Mater. 8, 1702716 (2018).

    Article  Google Scholar 

  12. Lu, X., Xia, G., Lemmon, J. P. & Yang, Z. Advanced materials for sodium–beta alumina batteries: status, challenges and perspectives. J. Power Sources 195, 2431–2442 (2010).

    Article  CAS  Google Scholar 

  13. Lu, X. et al. Liquid–metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage. Nat. Commun. 5, 4578 (2014).

    Article  CAS  Google Scholar 

  14. Näfe, H., Fritz, M. & Lorenz, W. On the defect electron conduction parameter of Na·beta-alumina. Solid State Ion 74, 275–278 (1994).

    Article  Google Scholar 

  15. Lu, X. et al. Advanced intermediate-temperature Na–S battery. Energy Environ. Sci. 6, 299–306 (2013).

    Article  CAS  Google Scholar 

  16. Li, G. et al. Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density. Nat. Commun. 7, 10683 (2016).

    Article  CAS  Google Scholar 

  17. Wen, Z. et al. Research on sodium sulfur battery for energy storage. Solid State Ion 179, 1697–1701 (2008).

    Article  CAS  Google Scholar 

  18. Wen, Z. et al. Research activities in Shanghai Institute of Ceramics, Chinese Academy of Sciences on the solid electrolytes for sodium sulfur batteries. J. Power Sources 184, 641–645 (2008).

    Article  CAS  Google Scholar 

  19. De Jonghe, L. C., Feldman, L. & Beuchele, A. Slow degradation and electron conduction in sodium/beta-aluminas. J. Mater. Sci. 16, 780–786 (1981).

    Article  Google Scholar 

  20. Williams, R. M. et al. The thermal stability of sodium beta''-alumina solid electrolyte ceramic in AMTEC cells. In Space Technology and Applications International Forum 1306–1311 (AIP, 1999).

  21. Ansell, R. The chemical and electrochemical stability of beta-alumina. J. Mater. Sci. 21, 365–379 (1986).

    Article  CAS  Google Scholar 

  22. Bay, M. C. et al. Sodium plating from Na‐β″‐alumina ceramics at room temperature, paving the way for fast‐charging all‐solid‐state batteries. Adv. Energy Mater. 10, 1902899 (2020).

    Article  CAS  Google Scholar 

  23. Lacivita, V., Wang, Y., Bo, S.-H. & Ceder, G. Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries. J. Mater. Chem. A 7, 8144–8155 (2019).

    Article  CAS  Google Scholar 

  24. Krauskopf, T., Mogwitz, B., Rosenbach, C., Zeier, W. G. & Janek, J. Diffusion limitation of lithium metal and Li–Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019).

    Article  CAS  Google Scholar 

  25. Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article  CAS  Google Scholar 

  26. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  27. Bianchini, F., Fjellvag, H. & Vajeeston, P. A first principle comparative study of the ionic diffusivity in LiAlO2 and NaAlO2 polymorphs for solid-state battery applications. Phys. Chem. Chem. Phys. 20, 9824–9832 (2018).

    Article  CAS  Google Scholar 

  28. Krauskopf, T., Richter, F. H., Zeier, W. G. & Janek, J. R. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120, 7745–7794 (2020).

    Article  CAS  Google Scholar 

  29. Aetukuri, N. B. et al. Flexible ion‐conducting composite membranes for lithium batteries. Adv. Energy Mater. 5, 1500265 (2015).

    Article  Google Scholar 

  30. Cho, Y.-H. et al. Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3. J. Mater. Sci. 47, 5970–5977 (2012).

    Article  CAS  Google Scholar 

  31. Krauskopf, T., Hartmann, H., Zeier, W. G. & Janek, J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries-an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 11, 14463–14477 (2019).

    Article  CAS  Google Scholar 

  32. Kim, Y. et al. The effect of relative density on the mechanical properties of hot‐pressed cubic Li7La3Zr2O12. J. Am. Ceram. Soc. 99, 1367–1374 (2016).

    Article  CAS  Google Scholar 

  33. Wolfenstine, J., Allen, J. L., Sakamoto, J., Siegel, D. J. & Choe, H. Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review. Ionics 24, 1271–1276 (2017).

    Article  Google Scholar 

  34. De Jonghe, L. C. Transport number gradients and solid electrolyte degradation. J. Electrochem. Soc. 129, 752–755 (1982).

    Article  Google Scholar 

  35. Zhang, L., Zhu, L. & Virkar, A. V. Electronic conductivity measurement of yttria-stabilized zirconia solid electrolytes by a transient technique. J. Power Sources 302, 98–106 (2016).

    Article  CAS  Google Scholar 

  36. Rangasamy, E., Wolfenstine, J. & Sakamoto, J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion 206, 28–32 (2012).

    Article  CAS  Google Scholar 

  37. Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    Article  CAS  Google Scholar 

  38. Shin, B. R. et al. Comparative study of TiS2/Li–In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim. Acta 146, 395–402 (2014).

    Article  CAS  Google Scholar 

  39. Wagner, C. Adsorbed atomic species as intermediates in heterogeneous catalysis. Adv. Catal. 21, 323–381 (1970).

  40. De Jonghe, L. C. & Buechele, A. Chemical colouration of sodium beta-aluminas. J. Mater. Sci. 17, 885–892 (1982).

    Article  Google Scholar 

  41. De Jonghe, L. C., Buechele, A. & Armand, M. Oxygen interstitial transport and chemical coloration in sodium-beta alumina. Solid State Ion. 9, 165–168 (1983).

    Google Scholar 

  42. Weber, N. A thermoelectric device based on beta-alumina solid electrolyte. Energy Convers. 14, 1–8 (1974).

    Article  CAS  Google Scholar 

  43. Westover, A. S., Dudney, N. J., Sacci, R. L. & Kalnaus, S. Deposition and confinement of Li metal along an artificial Lipon–Lipon interface. ACS Energy Lett. 4, 651–655 (2019).

    Article  CAS  Google Scholar 

  44. Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Article  Google Scholar 

  45. Yao, H. R. et al. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. J. Am. Chem. Soc. 139, 8440–8443 (2017).

    Article  CAS  Google Scholar 

  46. Fukunaga, A. et al. Intermediate-temperature ionic liquid NaFSA–KFSA and its application to sodium secondary batteries. J. Power Sources 209, 52–56 (2012).

    Article  CAS  Google Scholar 

  47. Kubota, K., Nohira, T., Goto, T. & Hagiwara, R. Novel inorganic ionic liquids possessing low melting temperatures and wide electrochemical windows: binary mixtures of alkali bis(fluorosulfonyl)amides. Electrochem. Commun. 10, 1886–1888 (2008).

    Article  CAS  Google Scholar 

  48. Bish, D. L. & Howard, S. Quantitative phase analysis using the Rietveld method. J. Appl. Crystallogr. 21, 86–91 (1988).

    Article  CAS  Google Scholar 

  49. Cheary, R. W. & Coelho, A. A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 25, 109–121 (1992).

    Article  CAS  Google Scholar 

  50. Reed, D. et al. Wetting of sodium on β″-Al2O3/YSZ composites for low temperature planar sodium-metal halide batteries. J. Power Sources 227, 94–100 (2013).

    Article  CAS  Google Scholar 

  51. Huntington, H. B. Ultrasonic measurements on single crystals. Phys. Rev. 72, 321 (1947).

    Article  CAS  Google Scholar 

  52. de With, G. & Wagemans, H. H. Ball-on-ring test revisited. J. Am. Ceram. Soc. 72, 1538–1541 (1989).

    Article  Google Scholar 

  53. Han, F., Zhu, Y., He, X., Mo, Y. & Wang, C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016).

    Article  Google Scholar 

  54. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  55. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  56. Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    Article  CAS  Google Scholar 

  57. Ong, S. P., Wang, L., Kang, B. & Ceder, G. Li−Fe−P−O2 phase diagram from first principles calculations. Chem. Mater. 20, 1798–1807 (2008).

    Article  CAS  Google Scholar 

  58. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  59. Young, T.III. An essay on the cohesion of fluid. Phil. Trans. R. Soc. Lond. 1805, 65–87 (1805).

    Google Scholar 

  60. Kim, Y., Ko, W.-S. & Lee, B.-J. Second nearest-neighbor modified embedded atom method interatomic potentials for the Na unary and Na–Sn binary systems. Comp. Mater. Sci. 185, 109953 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US Department of Energy (DOE) under award no. DEEE0008856 at the University of Maryland (UMD) and Office of Electricity (OE) at Pacific Northwest National Laboratory (PNNL). We appreciate useful discussions with I. Gyuk of the DOE-OE Grid Storage Program. T.D. is grateful for financial support from the Engie Chuck Edwards Memorial Fellowship at UMD. Additional support is from North Carolina A&T State University (NC A&T) through a faculty start-up fund. Some of the TEM and XPS analyses were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RL01830. We also thank J. F. Bonnett for the YSZ@BASE conversion, J. Song for cathode preparation, M. E. Bowden for the XRD analysis, and M. H. Engelhard for the XPS characterization. Part of the SEM analysis was done by K. Nowlin at the Joint School of Nanoscience and Nanoengineering, an academic collaboration between NC A&T and the University of North Carolina at Greensboro.

Author information

Authors and Affiliations

Authors

Contributions

T.D., Chunsheng Wang and X.L. proposed the research and designed the experiment. T.D., X.L., O.C., L.C., T.R.A. and H.-J.C. performed the experiments (material synthesis, characterization, battery fabrication and testing, and so on). X.J., T.D., Chungsheng Wang and X.L. conceived the simulation protocol, and X.J. carried out the simulations. L.Z., Chongmin Wang and X.F. performed the TEM, FIB, STEM–EDS analyses. T.D., Chungsheng Wang and X.L. analysed the data and wrote the manuscript with suggestions and comments from all the authors. All the authors contributed to the interpretation of the results.

Corresponding authors

Correspondence to Chunsheng Wang or Xiaochuan Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Yoon Seok Jung, Guoxiu Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30, Discussion and Tables 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, T., Ji, X., Zou, L. et al. Interfacial-engineering-enabled practical low-temperature sodium metal battery. Nat. Nanotechnol. 17, 269–277 (2022). https://doi.org/10.1038/s41565-021-01036-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01036-6

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene