Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Soft-lock drawing of super-aligned carbon nanotube bundles for nanometre electrical contacts

A Publisher Correction to this article was published on 11 March 2022

This article has been updated

Abstract

The assembly of single-walled carbon nanotubes (CNTs) into high-density horizontal arrays is strongly desired for practical applications, but challenges remain despite myriads of research efforts. Herein, we developed a non-destructive soft-lock drawing method to achieve ultraclean single-walled CNT arrays with a very high degree of alignment (angle standard deviation of ~0.03°). These arrays contained a large portion of nanometre-sized CNT bundles, yielding a high packing density (~400 µm−1) and high current carrying capacity (1.8 × 108 A cm2). This alignment strategy can be generally extended to diverse substrates or sources of raw single-walled CNTs. Significantly, the assembled CNT bundles were used as nanometre electrical contacts of high-density monolayer molybdenum disulfide (MoS2) transistors, exhibiting high current density (~38 µA µm−1), low contact resistance (~1.6 kΩ µm), excellent device-to-device uniformity and highly reduced device areas (0.06 µm2 per device), demonstrating their potential for future electronic devices and advanced integration technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterizations of aligned CNT arrays created with a soft-lock drawing method.
Fig. 2: Mechanism and statistics of CNT alignment.
Fig. 3: Cleaning and long-range ordering of CNTs by soft-lock drawing method.
Fig. 4: MoS2 transistor array with CNT bundles as nanometre electrical contacts.

Similar content being viewed by others

Data availability

All data are available in the manuscript or supplementary information. All materials and data are available on request to J.K., A.C., T.P. and E.S.

Change history

References

  1. Cao, Q., Tersoff, J., Farmer, D. B., Zhu, Y. & Han, S.-J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 356, 1369–1372 (2017).

    Article  CAS  Google Scholar 

  2. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    Article  CAS  Google Scholar 

  3. Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).

    Article  CAS  Google Scholar 

  4. Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

    Article  CAS  Google Scholar 

  5. Wilson, L. International Technology Roadmap for Semiconductors (ITRS) (Semiconductor Industry Association, 2013).

  6. Collins, P. G., Arnold, M. S. & Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001).

    Article  CAS  Google Scholar 

  7. Bai, Y. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 13, 589–595 (2018).

    Article  CAS  Google Scholar 

  8. Zhang, R., Zhang, Y. & Wei, F. Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 46, 3661–3715 (2017).

    Article  CAS  Google Scholar 

  9. Cao, Q. et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 8, 180–186 (2013).

    Article  CAS  Google Scholar 

  10. Jiang, K., Li, Q. & Fan, S. Spinning continuous carbon nanotube yarns. Nature 419, 801 (2002).

    Article  CAS  Google Scholar 

  11. He, X. et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotechnol. 11, 633–638 (2016).

    Article  CAS  Google Scholar 

  12. Jinkins, K. R. et al. Nanotube alignment mechanism in floating evaporative self-assembly. Langmuir 33, 13407–13414 (2017).

    Article  CAS  Google Scholar 

  13. Mclean, R. S., Huang, X., Khripin, C., Jagota, A. & Zheng, M. Controlled two-dimensional pattern of spontaneously aligned carbon nanotubes. Nano Lett. 6, 55–60 (2006).

    Article  CAS  Google Scholar 

  14. Yu, G., Cao, A. & Lieber, C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2, 372–377 (2007).

    Article  CAS  Google Scholar 

  15. Zhang, M. et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215–1219 (2005).

    Article  CAS  Google Scholar 

  16. Li, X. et al. Langmuir–Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 129, 4890–4891 (2007).

    Article  CAS  Google Scholar 

  17. Wang, D., Song, P., Liu, C., Wu, W. & Fan, S. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnol. 19, 075609 (2008).

    Article  Google Scholar 

  18. Sun, W. et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science 368, 874–877 (2020).

    Article  CAS  Google Scholar 

  19. Zhao, M. et al. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. Science 368, 878–881 (2020).

    Article  CAS  Google Scholar 

  20. Liu, L. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 368, 850–856 (2020).

    Article  CAS  Google Scholar 

  21. Li, Z. et al. Large area, highly transparent carbon nanotube spiderwebs for energy harvesting. J. Mater. Chem. 20, 7236–7240 (2010).

    Article  CAS  Google Scholar 

  22. Yao, J., Yan, H. & Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8, 329–335 (2013).

    Article  CAS  Google Scholar 

  23. Hu, Y. et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat. Commun. 6, 6099 (2015).

    Article  CAS  Google Scholar 

  24. Deng, S. et al. High-throughput determination of statistical structure information for horizontal carbon nanotube arrays by optical imaging. Adv. Mater. 28, 2018–2023 (2016).

    Article  CAS  Google Scholar 

  25. Liu, K. et al. Systematic determination of absolute absorption cross-section of individual carbon nanotubes. Proc. Natl Acad. Sci. USA 111, 7564–7569 (2014).

    Article  CAS  Google Scholar 

  26. Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    Article  Google Scholar 

  27. Liu, H. et al. Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers. ACS Nano. 8, 1031–1038 (2013).

    Article  Google Scholar 

  28. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article  CAS  Google Scholar 

  29. Guo, Y. et al. Additive manufacturing of patterned 2D semiconductor through recyclable masked growth. Proc. Natl Acad. Sci. USA 116, 3437–3442 (2019).

    Article  CAS  Google Scholar 

  30. Smithe, K. K., English, C. D., Suryavanshi, S. V. & Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. 4, 011009 (2016).

    Article  Google Scholar 

  31. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  CAS  Google Scholar 

  32. Leong, W. S. et al. Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes. ACS Nano. 9, 869–877 (2015).

    Article  CAS  Google Scholar 

  33. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  CAS  Google Scholar 

  34. English, C. D. et al. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16, 3824–3830 (2016).

    Article  CAS  Google Scholar 

  35. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  Google Scholar 

  36. Shen, P. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  CAS  Google Scholar 

  37. Badaroglu, M. et al. PPAC scaling enablement for 5 nm mobile SoC technology. In Proc. 47th European Solid-State Device Conference (ESSDERC 2017) 240–243 (IEEE, 2017).

  38. Ieong, M. et al. Transistor scaling with novel materials. Mater. Today 9, 26–31 (2006).

    Article  Google Scholar 

  39. Naik, M. Interconnect trend for single digit nodes. In International Electron Devices Meeting Technical Digest (IEDM), San Francisco, USA, 1–5 December (IEEE, 2018).

  40. Yakimets, D. et al. Power aware FinFET and lateral nanosheet FET targeting for 3 nm CMOS technology. In International Electron Devices Meeting Technical Digest (IEDM), San Francisco, USA, 2–6 December (IEEE, 2017).

  41. Subramaniam, C. et al. One hundred fold increase in current carrying capacity in a carbon nanotube–copper composite. Nat. Commun. 4, 2202 (2013).

    Article  Google Scholar 

  42. Lloyd, J. & Clement, J. Electromigration in copper conductors. Thin Solid Films 262, 135–141 (1995).

    Article  CAS  Google Scholar 

  43. Black, J. R. Electromigration failure modes in aluminum metallization for semiconductor devices. Proc. IEEE 57, 1587–1594 (1969).

    Article  Google Scholar 

  44. Dai, H., Wong, E. W. & Lieber, C. M. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272, 523–526 (1996).

    Article  CAS  Google Scholar 

  45. Frank, S., Poncharal, P., Wang, Z. & De Heer, W. A. Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998).

    Article  CAS  Google Scholar 

  46. Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941 (2000).

    Article  CAS  Google Scholar 

  47. Zhao, Y., Wei, J., Vajtai, R., Ajayan, P. M. & Barrera, E. V. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci. Rep. 1, 83 (2011).

    Article  Google Scholar 

  48. Behabtu, N. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339, 182–186 (2013).

    Article  CAS  Google Scholar 

  49. Wang, X. et al. High‐ampacity power cables of tightly‐packed and aligned carbon nanotubes. Adv. Func. Mater. 24, 3241–3249 (2014).

    Article  Google Scholar 

  50. Gurarslan, A. et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano. 8, 11522 (2014).

    Article  CAS  Google Scholar 

  51. Gu, J. et al. Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of high-performance thin-film transistors. Small 12, 4993–4999 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Yang and Y. Li from Peking University for helpful discussions, and the Instrumentation and Service Center for Physical Sciences (ISCPS) at Westlake University for part of morphological characterizations. This work is partially supported by the Air Force Office of Scientific Research under the MURI-FATE program, grant no. FA9550-15-1-0514 (Y.G. and J.K.); NSFC 51672005 and Natural Science Foundation of Beijing 2212028 (A.C.), as well as by the US Army Research Office through the Institute for Soldier Nanotechnologies, under cooperative agreement no. W911NF-18-2-0048 (T.P., J.-D.Z., Y.L., P.-C.S., A.-Y.L. and J.K.), US Army Research Office under grant no. W911NF-18-1-0431 (J.W., J.-H.P. and J.K.), the STC Center for Integrated Quantum Materials, NSF grant no. DMR-1231319 (Q.J. and J.K.), the Center for Energy Efficient Electronics Science (NSF Grant No. 0939514) (P.-C.S. and J.K.) and the Office of Naval Research, grant no. N00014-19-1-2296 (L.D.).

Author information

Authors and Affiliations

Authors

Contributions

Y.G., E.S., J.-D.Z. and J.K. designed the study. Y.G. and E.S. performed material synthesis, characterization and CNT alignment. J.-D.Z. performed device, array fabrication and measurements. P.-C.S. performed the initial device fabrication and measurements. J.W. performed the flexible modelling of CNTs alignment. Y.M. performed the initial mechanism modelling of CNTs alignment. Y.L. performed the CNT ampacity measurement. S.D. conducted the measurement of CNT density. J.-H.P. performed the MOCVD synthesis of MoS2. A.-Y.L. performed the statistics of CNTs diameter from Raman measurements. S.Z. conducted polarization Raman measurements. S.Q. and Q.L. provided CNT materials. B.L., Q.J., Z.L, C.Q., L.D., S.Q. Q.L., Y.W., J.Z., T.P. and A.C. participated in data analysis. E.S., Y.G. and J.-D.Z. wrote the manuscript. All authors read and revised the manuscript.

Corresponding authors

Correspondence to Enzheng Shi, Tomás Palacios, Anyuan Cao or Jing Kong.

Ethics declarations

Competing interests

E.S., Y.G., B.L. and A.C. have applied for a patent related to the results presented in Figs. 1, 2f and 3a,c–f and Supplementary Figs. 16, 14 and 25 with patent application number 2021113134358. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Modelling and calculation, Supplementary Figs. 1–31, Tables 1 and 2, Notes 1 and 2, and refs. 1–18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Shi, E., Zhu, J. et al. Soft-lock drawing of super-aligned carbon nanotube bundles for nanometre electrical contacts. Nat. Nanotechnol. 17, 278–284 (2022). https://doi.org/10.1038/s41565-021-01034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01034-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing