Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum-dot single-photon sources for the quantum internet

High-performance quantum light sources based on semiconductor quantum dots coupled to microcavities are showing their promise in long-distance solid-state quantum networks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An envisioned quantum internet with semiconductor quantum dots (QDs).

References

  1. Kimble, H. J. Nature 453, 1023–1030 (2008).

    Article  CAS  Google Scholar 

  2. Bennett, C. H. & Brassard, G. In Proc. IEEE International Conference on Computers, Systems and Signal Processing. 175–179 (1984).

  3. Bennett, C. H. et al. Phys. Rev. Lett. 70, 1895 (1993).

    Article  CAS  Google Scholar 

  4. Yin, J. et al. Science 356, 1140–1144 (2017).

    Article  CAS  Google Scholar 

  5. Morimae, T. & Fujii, K. Phys. Rev. A 87, 050301 (2013).

    Article  Google Scholar 

  6. Giovannetti, V., Lloyd, S. & Maccone, L. Phys. Rev. Lett. 96, 010401 (2006).

    Article  Google Scholar 

  7. Duan, L.-M., Lukin, M., Cirac, J. I. & Zoller, P. Nature 414, 413–418 (2001).

    Article  CAS  Google Scholar 

  8. Chen, Y.-A. et al. Nature 589, 214–219 (2021).

    Article  CAS  Google Scholar 

  9. Żukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. Phys. Rev. Lett. 71, 4287 (1993).

    Article  Google Scholar 

  10. Bouwmeester, D. et al. Nature 390, 575–579 (1997).

    Article  CAS  Google Scholar 

  11. Ritter, S. et al. Nature 484, 195–200 (2012).

    Article  CAS  Google Scholar 

  12. Hensen, B. et al. Nature 526, 682–686 (2015).

    Article  CAS  Google Scholar 

  13. Senellart, P., Solomon, G. & White, A. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  CAS  Google Scholar 

  14. Lodahl, P., Mahmoodian, S. & Stobbe, S. Rev. Mod. Phys. 87, 347 (2015).

    Article  CAS  Google Scholar 

  15. He, Y.-M. et al. Nat. Nanotechnol. 8, 213–217 (2013).

    Article  CAS  Google Scholar 

  16. Ding, X. et al. Phys. Rev. Lett. 116, 020401 (2016).

    Article  Google Scholar 

  17. Somaschi, N. et al. Nat. Photonics 10, 340–345 (2016).

    Article  CAS  Google Scholar 

  18. Wang, H. et al. Nat. Photonics 13, 770–775 (2019).

    Article  CAS  Google Scholar 

  19. Tomm, N. et al. Nat. Nanotech. 16, 399–403 (2021).

    Article  CAS  Google Scholar 

  20. Aaronson, S. & Arkhipov, A. In Proc. 43rd ACM Symposium on Theory of Computing 333–243 (ACM, 2011).

  21. Wang, H. et al. Nat. Photonics 11, 361–365 (2017).

    Article  CAS  Google Scholar 

  22. Wang, H. et al. Phys. Rev. Lett. 123, 250503 (2019).

    Article  CAS  Google Scholar 

  23. Zhong, H.-S. et al. Phys. Rev. Lett. 121, 250505 (2018).

    Article  Google Scholar 

  24. Brassard, G., Lütkenhaus, N., Mor, T. & Sanders, B. C. Phys. Rev. Lett. 85, 1330 (2000).

    Article  CAS  Google Scholar 

  25. Waks, E. et al. Nature 420, 762 (2002).

    Article  CAS  Google Scholar 

  26. Basset, F. B. et al. Sci. Adv. 7, 12 (2021).

    Google Scholar 

  27. Schimpf, C. et al. Sci. Adv. 7, 16 (2021).

    Article  Google Scholar 

  28. You, X. et al. Preprint at https://arxiv.org/abs/2106.15545 (2021).

  29. Sun, Q.-C. et al. Optica 17, 2334 (2017).

    Google Scholar 

  30. de Riedmatten, H. et al. Phys. Rev. Lett. 92, 047904 (2004).

    Article  Google Scholar 

  31. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  CAS  Google Scholar 

  32. Pan, J.-W. et al. Rev. Mod. Phys. 84, 777 (2012).

    Article  Google Scholar 

  33. Bartolucci, S. et al. Preprint at https://arxiv.org/abs/2101.09310v1 (2021).

  34. Azuma, K., Tamaki, K. & Lo, H.-K. Nat. Commun. 6, 1–7 (2015).

    Google Scholar 

  35. Lodahl, P. Quan. Sci. Tech. 3, 013001 (2017).

    Article  Google Scholar 

  36. Zhong, H.-S. et al. Science 370, 1460 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao-Yang Lu or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, CY., Pan, JW. Quantum-dot single-photon sources for the quantum internet. Nat. Nanotechnol. 16, 1294–1296 (2021). https://doi.org/10.1038/s41565-021-01033-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01033-9

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research