Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance

Abstract

Dense, thick, but fast-ion-conductive electrodes are critical yet challenging components of ultrafast electrochemical capacitors with high volumetric power/energy densities1,2,3,4. Here we report an exfoliation–fragmentation–restacking strategy towards thickness-adjustable (1.5‒24.0 μm) dense electrode films of restacked two-dimensional 1T-MoS2 quantum sheets. These films bear the unique architecture of an exceptionally high density of narrow (sub-1.2 nm) and ultrashort (~6.1 nm) hydrophobic nanochannels for confinement ion transport. Among them, 14-μm-thick films tested at 2,000 mV s−1 can deliver not only a high areal capacitance of 0.63 F cm−2 but also a volumetric capacitance of 437 F cm−3 that is one order of magnitude higher than that of other electrodes. Density functional theory and ab initio molecular dynamics simulations suggest that both hydration and nanoscale channels play crucial roles in enabling ultrafast ion transport and enhanced charge storage. This work provides a versatile strategy for generating rapid ion transport channels in thick but dense films for energy storage and filtration applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the design and fabrication of 2D 1T-MoS2 QS films.
Fig. 2: Characterizations of 2D 1T-MoS2 QS films.
Fig. 3: Electrochemical performance of the hydrated 2D 1T-MoS2 QS electrodes in 0.5 M H2SO4 electrolyte.
Fig. 4: Comparison of the Cv and Ca of 1T-MoS2 QS electrodes with the benchmark electrodes at scan rates of 1,000 and 2,000 mV s−1 in aqueous electrolytes.

Similar content being viewed by others

Data availability

All the data relevant to the findings of this study have been included in the Supplementary Information.

Code availability

No customized code was used in this study.

References

  1. Gogotsi, Y. & Simon, P. True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011).

    Article  CAS  Google Scholar 

  2. Zhu, Y. et al. Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011).

    Article  CAS  Google Scholar 

  3. Lin, T. et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015).

    Article  CAS  Google Scholar 

  4. Simon, P. & Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020).

    Article  CAS  Google Scholar 

  5. Augustyn, V. & Gogotsi, Y. 2D materials with nanoconfined fluids for electrochemical energy storage. Joule 1, 443–452 (2017).

    Article  CAS  Google Scholar 

  6. Choi, C. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2019).

    Article  Google Scholar 

  7. Gao, T. et al. 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv. Energy Mater. 9, 1802578 (2019).

    Article  Google Scholar 

  8. Jiang, K. et al. Interfacial approach toward benzene‐bridged polypyrrole film–based micro‐supercapacitors with ultrahigh volumetric power density. Adv. Funct. Mater. 30, 1908243 (2020).

    Article  CAS  Google Scholar 

  9. Feng, D. et al. Robust and conductive two-dimensional metal−organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018).

    Article  CAS  Google Scholar 

  10. Sun, H. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017).

    Article  CAS  Google Scholar 

  11. Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017).

    Article  CAS  Google Scholar 

  12. Koltonow, A. R. & Huang, J. Two-dimensional nanofluidics. Science 351, 1395–1396 (2016).

    Article  CAS  Google Scholar 

  13. Sun, H. et al. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019).

    Article  Google Scholar 

  14. Li, Z. et al. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 5, 160–168 (2020).

    Article  CAS  Google Scholar 

  15. Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).

    Article  CAS  Google Scholar 

  16. Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013).

    Article  CAS  Google Scholar 

  17. Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    Article  CAS  Google Scholar 

  18. Xia, Y. et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018).

    Article  CAS  Google Scholar 

  19. Pomerantseva, E., Bonaccorso, F., Feng, X. L., Cui, Y. & Gogotsi, Y. Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019).

    Article  CAS  Google Scholar 

  20. Wu, J. et al. Acid-assisted exfoliation toward metallic sub-nanopore TaS2 monolayer with high volumetric capacitance. J. Am. Chem. Soc. 140, 493–498 (2018).

    Article  CAS  Google Scholar 

  21. Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).

    Article  CAS  Google Scholar 

  22. Yoo, J. et al. Ultrathin planar graphene supercapacitors. Nano Lett. 11, 1423–1427 (2011).

    Article  CAS  Google Scholar 

  23. Yoon, Y. et al. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8, 4580–4590 (2014).

    Article  CAS  Google Scholar 

  24. de Grotthuss, C. J. T. Sur la décomposition de l’eau et des corps q’uelle tient en dissolution à l’aide de l’électricité galvanique. Ann. Chim. LVIII, 54–74 (1806).

    Google Scholar 

  25. Duan, C. H. & Majumdar, A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 5, 848–852 (2010).

    Article  CAS  Google Scholar 

  26. Tunuguntla, R. H., Allen, F. I., Kim, K., Belliveau, A. & Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 11, 639–644 (2016).

    Article  CAS  Google Scholar 

  27. Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).

    Article  CAS  Google Scholar 

  28. Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    Article  CAS  Google Scholar 

  29. Chen, W. et al. Quantum dots of 1T phase transitional metal dichalcogenides generated via electrochemical Li intercalation. ACS Nano 12, 308–316 (2018).

    Article  CAS  Google Scholar 

  30. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  31. Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).

    Article  CAS  Google Scholar 

  32. Lindström, H. et al. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 101, 7717–7722 (1997).

    Article  Google Scholar 

  33. Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013).

    Article  CAS  Google Scholar 

  34. Bankura, A. & Chandra, A. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores. J. Phys. Chem. B 116, 9744–9757 (2012).

    Article  CAS  Google Scholar 

  35. Zhan, C. et al. Specific ion effects at graphitic interfaces. Nat. Commun. 10, 4858 (2019).

    Article  Google Scholar 

  36. Dellago, C., Naor, M. M. & Hummer, G. Proton transport through water-filled carbon nanotubes. Phys. Rev. Lett. 90, 105902 (2003).

    Article  Google Scholar 

  37. Cheng, C. et al. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2, e1501272 (2016).

    Article  Google Scholar 

  38. Cheng, C., Jiang, G. P., Simon, G. P., Liu, J. Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).

    Article  CAS  Google Scholar 

  39. Tao, Q. et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 8, 14949 (2017).

    Article  Google Scholar 

  40. Sheng, L. et al. Multilayer‐folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors. Adv. Funct. Mater. 28, 1800597 (2018).

    Article  Google Scholar 

  41. Tian, W. Q. et al. Multifunctional nanocomposites with high strength and capacitance using 2D Mxene and 1D nanocellulose. Adv. Mater. 31, 1902977 (2019).

    Article  Google Scholar 

  42. Higgins, T. M. et al. Effect of percolation on the capacitance of supercapacitor electrodes prepared from composites of manganese dioxide nanoplatelets and carbon nanotubes. ACS Nano 8, 9567–9579 (2014).

    Article  CAS  Google Scholar 

  43. Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009).

    Article  CAS  Google Scholar 

  44. Holt, J. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  45. Xu, Y. X. et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7, 4042–4049 (2013).

    Article  CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  47. Giannozzi, P. et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  48. Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article  Google Scholar 

  49. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  50. Nishihara, S. & Otani, M. Hybrid solvation models for bulk, interface, and membrane: reference interaction site methods coupled with density functional theory. Phys. Rev. B 96, 115429 (2017).

    Article  Google Scholar 

  51. Kovalenko, A. & Hirata, F. Self-consistent description of a metal–water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model. J. Chem. Phys. 110, 10095 (1999).

    Article  CAS  Google Scholar 

  52. Matsugami, M., Yoshida, N. & Hirata, F. Theoretical characterization of the ‘ridge’ in the supercritical region in the fluid phase diagram of water. J. Chem. Phys. 140, 104511 (2014).

    Article  Google Scholar 

  53. Heiranian, M., Wu, Y. B. & Aluru, N. R. Molybdenum disulfide and water interaction parameters. J. Chem. Phys. 147, 104706 (2017).

    Article  Google Scholar 

  54. Jensen, K. P. & Jorgensen, W. L. Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. J. Chem. Theory Comput. 2, 1499–1509 (2006).

    Article  CAS  Google Scholar 

  55. Sugahara, A. et al. Negative dielectric constant of water confined in nanosheets. Nat. Commun. 10, 850 (2019).

    Article  Google Scholar 

  56. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  57. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  58. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  59. Shuichi, N. Constant temperature molecular dynamics methods. Prog. Theor. Phys. Suppl. 103, 1–46 (1991).

    Article  Google Scholar 

  60. Bylander, D. & Kleinman, L. Energy fluctuations induced by the Nosé thermostat. Phys. Rev. B 46, 13756–13761 (1992).

    Article  CAS  Google Scholar 

  61. Brehm, M. & Kirchner, B. TRAVIS—a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories. J. Chem. Inf. Model. 51, 2007–2023 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work at SJTU was supported by the National Natural Science Foundation of China (grant numbers 52072241, 52071213 and 51772187); the Shanghai Science and Technology Committee (grant number 18JC1410500); and the Natural Science Funds for Colleges and Universities in Jiangsu Province, China (grant number 20KJB430048). The work at LLNL was performed under the auspices of the US Department of Energy under contract number DE-AC52-07NA27344. C.Z. and Y.M.W. acknowledge the support of UCOP Project number LFR-17-477237. T.A.P. was supported as part of the Center for Enhanced Nanofluidic Transport, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences (BES), under award number DESC0019112. B.D. was supported by the Office of Naval Research (grant number N00014-19-1-2113). We thank R. Luo for his help with TEM characterizations and analyses.

Author information

Authors and Affiliations

Authors

Contributions

W.C., J.G., Q.L., D.Z., B.D. and Y.M.W. conceived the idea and designed the experiments. W.C. and M.Y. carried out most of the materials synthesis and electrochemical experiments under the guidance of J.G., Q.L. and D.Z. C.Z. and T.A.P. performed all theoretical calculations. X.Z., G.L. and W.Z. carried out some characterizations and analysis of experiments. W.C., J.G., Q.L. and Y.M.W. wrote the manuscript with contributions from all the co-authors.

Corresponding authors

Correspondence to Jiajun Gu, Qinglei Liu, Di Zhang or Y. Morris Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Xuebin Zhu and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–32, Tables 1–4 and references.

Supplementary Video 1

The animation of the diffusion of solvated H3O+ in a −1|e| charged 0.8 nm MoS2 channel from the AIMD trajectory in a top view along the z direction.

Supplementary Video 2

The animation of the diffusion of solvated K+ in a −1|e| charged 0.8 nm MoS2 channel from the AIMD trajectory in a top view along the z direction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Gu, J., Liu, Q. et al. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat. Nanotechnol. 17, 153–158 (2022). https://doi.org/10.1038/s41565-021-01020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01020-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing