Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses

Abstract

Photoluminescence intermittency is a ubiquitous phenomenon, reducing the temporal emission intensity stability of single colloidal quantum dots (QDs) and the emission quantum yield of their ensembles. Despite efforts to achieve blinking reduction by chemical engineering of the QD architecture and its environment, blinking still poses barriers to the application of QDs, particularly in single-particle tracking in biology or in single-photon sources. Here, we demonstrate a deterministic all-optical suppression of QD blinking using a compound technique of visible and mid-infrared excitation. We show that moderate-field ultrafast mid-infrared pulses (5.5 μm, 150 fs) can switch the emission from a charged, low quantum yield grey trion state to the bright exciton state in CdSe/CdS core–shell QDs, resulting in a significant reduction of the QD intensity flicker. Quantum-tunnelling simulations suggest that the mid-infrared fields remove the excess charge from trions with reduced emission quantum yield to restore higher brightness exciton emission. Our approach can be integrated with existing single-particle tracking or super-resolution microscopy techniques without any modification to the sample and translates to other emitters presenting charging-induced photoluminescence intermittencies, such as single-photon emissive defects in diamond and two-dimensional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental scheme and single dot verification.
Fig. 2: MIR blinking control in single QDs.
Fig. 3: MIR fields alter PL lifetime, blinking statistics and spectrum of single QDs.
Fig. 4: MIR responses of QDs with different shell thicknesses.
Fig. 5: Simulations and illustrations of the MIR-driven blinking control model.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  2. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    Article  CAS  Google Scholar 

  3. Frantsuzov, P., Kuno, M., Jankó, B. & Marcus, R. A. Universal emission intermittency in quantum dots, nanorods and nanowires. Nat. Phys. 4, 519–522 (2008).

    Article  Google Scholar 

  4. Efros, A. L. & Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 11, 661–671 (2016).

    Article  CAS  Google Scholar 

  5. Sauter, T., Neuhauser, W., Blatt, R. & Toschek, P. E. Observation of quantum jumps. Phys. Rev. Lett. 57, 1696–1698 (1986).

    Article  CAS  Google Scholar 

  6. Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).

    Article  CAS  Google Scholar 

  7. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  CAS  Google Scholar 

  8. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  CAS  Google Scholar 

  9. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  10. Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003).

    Article  CAS  Google Scholar 

  11. Galland, C. et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479, 203–207 (2011).

    Article  CAS  Google Scholar 

  12. Chen, Y. et al. ‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008).

    Article  CAS  Google Scholar 

  13. Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008).

    Article  CAS  Google Scholar 

  14. Garcia-Santamaria, F. et al. Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface. Nano Lett. 11, 687–693 (2011).

    Article  CAS  Google Scholar 

  15. Ji, B. et al. Non-blinking quantum dot with a plasmonic nanoshell resonator. Nat. Nanotechnol. 10, 170–175 (2015).

    Article  CAS  Google Scholar 

  16. Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article  CAS  Google Scholar 

  17. Nasilowski, M., Spinicelli, P., Patriarche, G. & Dubertret, B. Gradient CdSe/CdS quantum dots with room temperature biexciton unity quantum yield. Nano Lett. 15, 3953–3958 (2015).

    Article  CAS  Google Scholar 

  18. Hohng, S. & Ha, T. Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc. 126, 1324–1325 (2004).

    Article  CAS  Google Scholar 

  19. Fomenko, V. & Nesbitt, D. J. Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression. Nano Lett. 8, 287–293 (2008).

    Article  CAS  Google Scholar 

  20. Thomas, E. M. et al. Blinking suppression in highly excited CdSe/ZnS quantum dots by electron transfer under large positive Gibbs (free) energy change. ACS Nano 12, 9060–9069 (2018).

    Article  CAS  Google Scholar 

  21. Jha, P. P. & Guyot-Sionnest, P. Electrochemical switching of the photoluminescence of single quantum dots. J. Phys. Chem. C 114, 21138–21141 (2010).

    Article  CAS  Google Scholar 

  22. Hebling, J., Yeh, K.-L., Hoffmann, M. C., Bartal, B. & Nelson, K. A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J. Opt. Soc. Am. B 25, B6–B19 (2008).

    Article  CAS  Google Scholar 

  23. Manzoni, C., Först, M., Ehrke, H. & Cavalleri, A. Single-shot detection and direct control of carrier phase drift of mid infrared pulses. Opt. Lett. 35, 757–759 (2010).

    Article  CAS  Google Scholar 

  24. Hamizi, N. A. & Johan M. R. Optical and FTIR studies of CdSe quantum dots, In 2010 3rd International Nanoelectronics Conference (INEC) 887–887 (IEEE, 2010).

  25. Cherniavskaya, O., Chen, L., Islam, M. A. & Brus, L. Photoionization of individual CdSe/CdS core/shell nanocrystals on silicon with 2-nm oxide depends on surface band bending. Nano Lett. 3, 497–501 (2003).

    Article  CAS  Google Scholar 

  26. Javaux, C. et al. Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals. Nat. Nanotechnol. 8, 206–212 (2013).

    Article  CAS  Google Scholar 

  27. Bharadwaj, P. & Novotny, L. Robustness of quantum dot power-law blinking. Nano Lett. 11, 2137–2141 (2011).

    Article  CAS  Google Scholar 

  28. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: a universal power law behavior. J. Chem. Phys. 112, 3117–3120 (2000).

    Article  CAS  Google Scholar 

  29. Hasham, M. & Wilson, M. W. B. Sub-bandgap optical modulation of quantum dot blinking statistics. J. Phys. Chem. Lett. 11, 6404–6412 (2020).

    Article  CAS  Google Scholar 

  30. Empedocles, S. A. & Bawendi, M. G. Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots. J. Phys. Chem. B 103, 1826–1830 (1999).

    Article  CAS  Google Scholar 

  31. Patton, B., Langbein, W. & Woggon, U. Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots. Phys. Rev. B 68, 125316 (2003).

    Article  Google Scholar 

  32. Bracker, A. S. et al. Binding energies of positive and negative trions: From quantum wells to quantum dots. Phys. Rev. B 72, 035332 (2005).

    Article  Google Scholar 

  33. Beyler, A. P. et al. Sample-averaged biexciton quantum yield measured by solution-phase photon correlation. Nano Lett. 14, 6792–6798 (2014).

    Article  CAS  Google Scholar 

  34. Rabouw, F. T. et al. Delayed exciton emission and its relation to blinking in CdSe quantum dots. Nano Lett. 15, 7718–7725 (2015).

    Article  CAS  Google Scholar 

  35. Hinterding, S. O. M., Vonk, S. J. W., van Harten, E. J. & Rabouw, F. T. Dynamics of intermittent delayed emission in single CdSe/CdS quantum dots. J. Phys. Chem. Lett. 11, 4755–4761 (2020).

    Article  CAS  Google Scholar 

  36. Jones, M., Lo, S. S. & Scholes, G. D. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. Proc. Natl Acad. Sci. USA 106, 3011–3016 (2009).

    Article  CAS  Google Scholar 

  37. Sher, P. H. et al. Power law carrier dynamics in semiconductor nanocrystals at nanosecond timescales. Appl. Phys. Lett. 92, 101111 (2008).

    Article  Google Scholar 

  38. Nandan, Y. & Mehata, M. S. Wavefunction engineering of type-I/type-II excitons of CdSe/CdS core-shell quantum dots. Sci. Rep. 9, 2 (2019).

    Article  Google Scholar 

  39. Elward, J. M. & Chakraborty, A. Effect of dot size on exciton binding energy and electron-hole recombination probability in CdSe quantum dots. J. Chem. Theory Comput. 9, 4351–4359 (2013).

    Article  CAS  Google Scholar 

  40. Empedocles, S. A. & Bawendi, M. G. Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997).

    Article  CAS  Google Scholar 

  41. Park, Y.-S., Bae, W. K., Pietryga, J. M. & Klimov, V. I. Auger recombination of biexcitons and negative and positive trions in individual quantum dots. ACS Nano 8, 7288–7296 (2014).

    Article  CAS  Google Scholar 

  42. Bae, W. K. et al. Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. ACS Nano 7, 3411–3419 (2013).

    Article  CAS  Google Scholar 

  43. Boucrot, E. et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517, 460–465 (2015).

    Article  CAS  Google Scholar 

  44. Watanabe, S. et al. Ultrafast endocytosis at mouse hippocampal synapses. Nature 504, 242–247 (2013).

    Article  CAS  Google Scholar 

  45. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  CAS  Google Scholar 

  46. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    Article  CAS  Google Scholar 

  47. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    Article  CAS  Google Scholar 

  48. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

    Article  CAS  Google Scholar 

  49. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    Article  CAS  Google Scholar 

  50. Carbone, L. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007).

    Article  CAS  Google Scholar 

  51. Zhao, J., Chen, O., Strasfeld, D. B. & Bawendi, M. G. Biexciton quantum yield heterogeneities in single CdSe (CdS) core (shell) nanocrystals and its correlation to exciton blinking. Nano Lett. 12, 4477–4483 (2012).

    Article  CAS  Google Scholar 

  52. Park, Y.-S. et al. Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy. Phys. Rev. Lett. 106, 187401 (2011).

    Article  Google Scholar 

  53. Park, Y.-S., Bae, W. K., Padilha, L. A., Pietryga, J. M. & Klimov, V. I. Effect of the core/shell interface on Auger recombination evaluated by single-quantum-dot spectroscopy. Nano Lett. 14, 396–402 (2014).

    Article  CAS  Google Scholar 

  54. Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).

    Article  CAS  Google Scholar 

  55. Shulenberger, K. E. et al. Multiexciton lifetimes reveal triexciton emission pathway in CdSe nanocrystals. Nano Lett. 18, 5153–5158 (2018).

    Article  CAS  Google Scholar 

  56. Steiner, D. et al. Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy. Nano Lett. 8, 2954–2958 (2008).

    Article  CAS  Google Scholar 

  57. Sitt, A., Sala, F. D., Menagen, G. & Banin, U. Multiexciton engineering in seeded core/shell nanorods: transfer from type-I to quasi-type-II regimes. Nano Lett. 9, 3470–3476 (2009).

    Article  CAS  Google Scholar 

  58. Panfil, Y. E., Shamalia, D., Cui, J., Koley, S. & Banin, U. Electronic coupling in colloidal quantum dot molecules; the case of CdSe/CdS core/shell homodimers. J. Chem. Phys. 151, 224501 (2019).

    Article  Google Scholar 

  59. Rainó, G. et al. Probing the wave function delocalization in CdSe/CdS dot-in-rod nanocrystals by time- and temperature-resolved spectroscopy. ACS Nano 5, 4031–4036 (2011).

    Article  Google Scholar 

  60. Ayari, S. et al. Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties. Nanoscale 12, 14448–14458 (2020).

    Article  CAS  Google Scholar 

  61. Giansante, C. & Infante, I. Surface traps in colloidal quantum dots: a combined experimental and theoretical perspective. J. Phys. Chem. Lett. 8, 5209–5215 (2017).

    Article  CAS  Google Scholar 

  62. Pillai, M., Goglio, J. & Walker, T. G. Matrix Numerov method for solving Schrödinger’s equation. Am. J. Phys. 80, 1017–1019 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

J.S., A.F., F.Y.G., Z.Z., U.B., A.P.W., K.A.N. and M.G.B. acknowledge support from the US Army Research Lab (ARL) and the US Army Research Office through the Institute for Soldier Nanotechnologies, under Cooperative Agreement number W911-NF-18-2-0048. W.S., H.U. and M.G.B. acknowledge support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (H.U. under award no. DE-FG02-07ER46454, W.S. and M.G.B under award nos DE-FG02-07ER46454 and DE-SC0021650). J.S., F.Y.G., Z.Z. and K.A.N. acknowledge additional support from the Samsung Global Outreach Program.

Author information

Authors and Affiliations

Authors

Contributions

J.S. and H.U. conceived the study and initiated the experiments. J.S., F.Y.G. and Z.Z. conducted and refined the infrared excitation measurements, developed the data acquisition and image processing software and analysed the experimental data. W.S. performed the solution biexciton experiments and contributed to data analysis and interpretation. A.F. (under the supervision of A.P.W.) performed the quantum-tunnelling simulations. U.B. synthesized CdSe/CdS QDs. J.S., W.S. and H.U. led the manuscript preparation. M.G.B. and K.A.N. supervised the project.

Corresponding authors

Correspondence to Keith A. Nelson or Moungi G. Bawendi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Efrat Lifshitz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–17 and Table 1.

Supplementary Video 1

Video of MIR effects on CdSe/CdS QDs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Sun, W., Utzat, H. et al. All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses. Nat. Nanotechnol. 16, 1355–1361 (2021). https://doi.org/10.1038/s41565-021-01016-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01016-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing