Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions

Abstract

Transport is non-reciprocal when not only the sign, but also the absolute value of the current depends on the polarity of the applied voltage. It requires simultaneously broken inversion and time-reversal symmetries, for example, by an interplay of spin–orbit coupling and magnetic field. Hitherto, observation of nonreciprocity was tied to resistivity, and dissipationless non-reciprocal circuit elements were elusive. Here we engineer fully superconducting non-reciprocal devices based on highly transparent Josephson junctions fabricated on InAs quantum wells. We demonstrate supercurrent rectification far below the transition temperature. By measuring Josephson inductance, we can link the non-reciprocal supercurrent to an asymmetry of the current–phase relation, and directly derive the supercurrent magnetochiral anisotropy coefficient. A semiquantitative model explains well the main features of our experimental data. Non-reciprocal Josephson junctions have the potential to become for superconducting circuits what pn junctions are for traditional electronics, enabling new non-dissipative circuit elements.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Josephson junction array and anomalous CPR.
Fig. 2: Supercurrent anisotropy and rectification.
Fig. 3: Supercurrent interference.
Fig. 4: Magnetochiral anisotropy in the fluctuation regime.

Data availability

The data that support the findings of this study are available at the online depository EPUB of the University of Regensburg, with the identifier doi:10.5283/epub.44877. Source data are provided with this paper.

Code availability

The computer codes that support the theoretical results, the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Scaff, J. H. & Ohl, R. S. Development of silicon crystal rectifiers for microwave radar receivers. Bell Syst. Tech. J. 26, 1–30 (1947).

    Google Scholar 

  2. Shockley, W. The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst. Tech. J. 28, 435–489 (1949).

    Google Scholar 

  3. Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931).

    CAS  Google Scholar 

  4. Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn 12, 570–586 (1957).

    Google Scholar 

  5. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    Google Scholar 

  6. Hoshino, S., Wakatsuki, R., Hamamoto, K. & Nagaosa, N. Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors. Phys. Rev. B 98, 054510 (2018).

    CAS  Google Scholar 

  7. Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).

    CAS  Google Scholar 

  8. Rikken, G. L. J. A. & Wyder, P. Magnetoelectric anisotropy in diffusive transport. Phys. Rev. Lett. 94, 016601 (2005).

    CAS  Google Scholar 

  9. Wakatsuki, R. et al. Nonreciprocal charge transport in noncentrosymmetric superconductors. Sci. Adv. 3, e1602390 (2017).

    Google Scholar 

  10. Itahashi, Y. M. et al. Nonreciprocal transport in gate-induced polar superconductor SrTiO3. Sci. Adv. 6, eaay9120 (2020).

    Google Scholar 

  11. Fulton, T. A., Dunkleberger, L. N. & Dynes, R. C. Quantum interference properties of double Josephson junctions. Phys. Rev. B 6, 855–875 (1972).

    CAS  Google Scholar 

  12. Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect 2nd edn (John Wiley and Sons, Inc., 1982)

  13. Baumgartner, C. et al. Josephson inductance as a probe for highly ballistic semiconductor-superconductor weak links. Phys. Rev. Lett. 126, 037001 (2021).

    CAS  Google Scholar 

  14. Bezuglyi, E. V., Rozhavsky, A. S., Vagner, I. D. & Wyder, P. Combined effect of Zeeman splitting and spin-orbit interaction on the Josephson current in a superconductor-two-dimensional electron gas-superconductor structure. Phys. Rev. B 66, 052508 (2002).

    Google Scholar 

  15. Buzdin, A. Direct coupling between magnetism and superconducting current in the Josephson φ0 junction. Phys. Rev. Lett. 101, 107005 (2008).

    CAS  Google Scholar 

  16. Reynoso, A. A., Usaj, G., Balseiro, C. A., Feinberg, D. & Avignon, M. Anomalous Josephson current in junctions with spin polarizing quantum point contacts. Phys. Rev. Lett. 101, 107001 (2008).

    CAS  Google Scholar 

  17. Reynoso, A. A., Usaj, G., Balseiro, C. A., Feinberg, D. & Avignon, M. Spin-orbit-induced chirality of Andreev states in Josephson junctions. Phys. Rev. B 86, 214519 (2012).

    Google Scholar 

  18. Yokoyama, T., Eto, M. & Nazarov, Y. V. Anomalous Josephson effect induced by spin-orbit interaction and Zeeman effect in semiconductor nanowires. Phys. Rev. B 89, 195407 (2014).

    Google Scholar 

  19. Shen, K., Vignale, G. & Raimondi, R. Microscopic theory of the inverse Edelstein effect. Phys. Rev. Lett. 112, 096601 (2014).

    Google Scholar 

  20. Konschelle, F., Tokatly, I. V. & Bergeret, F. S. Theory of the spin-galvanic effect and the anomalous phase shift φ0 in superconductors and Josephson junctions with intrinsic spin-orbit coupling. Phys. Rev. B 92, 125443 (2015).

    Google Scholar 

  21. Szombati, D. B. et al. Josephson φ0-junction in nanowire quantum dots. Nat. Phys. 12, 568–572 (2016).

    CAS  Google Scholar 

  22. Assouline, A. et al. Spin-orbit induced phase-shift in Bi2Se3 Josephson junctions. Nat. Commun. 10, 126 (2019).

    Google Scholar 

  23. Mayer, W. et al. Gate controlled anomalous phase shift in Al/InAs Josephson junctions. Nat. Commun. 11, 212 (2020).

    CAS  Google Scholar 

  24. Strambini, E. et al. A Josephson phase battery. Nat. Nanotechnol. 15, 656–660 (2020).

    CAS  Google Scholar 

  25. Rasmussen, A. et al. Effects of spin-orbit coupling and spatial symmetries on the Josephson current in SNS junctions. Phys. Rev. B 93, 155406 (2016).

    Google Scholar 

  26. Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).

    CAS  Google Scholar 

  27. Groth, C. W., Wimmer, M., Akhmerov, A. R. & Waintal, X. Kwant: a software package for quantum transport. New J. Phys. 16, 063065 (2014).

    Google Scholar 

  28. Mayer, W. et al. Superconducting proximity effect in InAsSb surface quantum wells with in situ Al contacts. ACS Appl. Electron. Mater. 2, 2351–2356 (2020).

    CAS  Google Scholar 

  29. Vurgaftman, I., Meyer, J. R. & Ram-Mohan, L. R. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001).

    CAS  Google Scholar 

  30. Fabian, J., Matos-Abiague, A., Ertler, C., Stano, P. & Žutić, I. Semiconductor spintronics. Acta Phys. Slov. 57, 565–907 (2007).

    CAS  Google Scholar 

  31. Seraide, R. M. & Hai, G.-Q. Low-temperature electron mobility in parabolic quantum wells. Braz. J. Phys. 32, 344–346 (2002).

    CAS  Google Scholar 

  32. Suominen, H. J. et al. Anomalous Fraunhofer interference in epitaxial superconductor-semiconductor Josephson junctions. Phys. Rev. B 95, 035307 (2017).

    Google Scholar 

  33. Guiducci, S. et al. Full electrostatic control of quantum interference in an extended trenched Josephson junction. Phys. Rev. B 99, 235419 (2019).

    CAS  Google Scholar 

  34. Beenakker, C. W. J. & van Houten, H. Josephson current through a superconducting quantum point contact shorter than the coherence length. Phys. Rev. Lett. 66, 3056–3059 (1991).

    CAS  Google Scholar 

  35. Furusaki, A. & Tsukada, M. Dc Josephson effect and Andreev reflection. Solid State Commun. 78, 299–302 (1991).

    Google Scholar 

  36. Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    CAS  Google Scholar 

  37. He, P. et al. Observation of out-of-plane spin texture in a SrTiO3(111) two-dimensional electron gas. Phys. Rev. Lett. 120, 266802 (2018).

    CAS  Google Scholar 

  38. Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C. 17, 6039–6045 (1984).

    Google Scholar 

  39. Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. J. Exp. Theor. Phys. Lett. 39, 78–81 (1984).

    Google Scholar 

  40. Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    CAS  Google Scholar 

  41. Calsaverini, R. S., Bernardes, E., Egues, J. C. & Loss, D. Intersubband-induced spin-orbit interaction in quantum wells. Phys. Rev. B 78, 155313 (2008).

    Google Scholar 

  42. Fu, J. & Egues, J. C. Spin-orbit interaction in GaAs wells: from one to two subbands. Phys. Rev. B 91, 075408 (2015).

    Google Scholar 

  43. Antipov, A. E. et al. Effects of gate-induced electric fields on semiconductor Majorana nanowires. Phys. Rev. X 8, 031041 (2018).

    CAS  Google Scholar 

  44. Mikkelsen, A. E. G., Kotetes, P., Krogstrup, P. & Flensberg, K. Hybridization at superconductor-semiconductor interfaces. Phys. Rev. X 8, 031040 (2018).

    CAS  Google Scholar 

  45. De Gennes, P. G. Superconductivity of Metals and Alloys (Addison Wesley, 1989).

    Google Scholar 

  46. Chen, C.-Z. et al. Asymmetric Josephson effect in inversion symmetry breaking topological materials. Phys. Rev. B 98, 075430 (2018).

    CAS  Google Scholar 

  47. Kononov, A. et al. One-dimensional edge transport in few-layer WTe2. Nano Lett. 20, 4228–4233 (2020).

    CAS  Google Scholar 

  48. Wang, W. et al. Evidence for an edge supercurrent in the Weyl superconductor MoTe2. Science 368, 534–537 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Tosi, A. Levi-Yeyati and S.H. Park for fruitful discussions. A.C. thanks M. Barth for valuable discussions on KWANT’s functionalities. C.B., L.F., A.C., S.R., P.E. F.J., D.K., J.F., N.P. and C.S. acknowledge funding by the Deutsche Forschungsgemeinschaft (German Research Foundation), Project-ID 314695032—SFB 1277 (Subprojects B05, B07 and B08). A.C., P.E.F.Jr., D.K. and J.F. also benefited from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 881603 (Graphene Flagship Core 3). A.C. and J.F. also acknowledge support from the DFG Project 454646522. Work completed by S.G., G.C.G., T.L. and M.J.M. is supported by Microsoft Quantum.

Author information

Authors and Affiliations

Authors

Contributions

C.B. fabricated the devices and performed the measurements. L.F. and S.R. developed and optimized the measurement method. T.L., S.G. and G.C.G. designed the heterostructure, conducted molecular-beam epitaxy growth and performed initial characterization of the hybrid superconductor/semiconductor wafer. C.B. and N.P. analysed the data. N.P. and C.S. conceived the experiment. A.C., D.K. and J.F. formulated the theoretical model. A.C. performed KWANT simulations, P.E.F.Jr. conducted the kp calculations, C.S., J.F. and M.J.M. supervised research activities at Regensburg and Purdue, respectively. All authors contributed to discussions and to the writing of the paper.

Corresponding author

Correspondence to Nicola Paradiso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Nanotechnology thanks Francesco Giazotto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Fraunhofer patterns with in-plane magnetic fields of opposite polarity.

a, Fraunhofer patterns for the Josephson junction array, measured at Bx = 0 for selected values of By < 0. Compared to the patterns in Fig. 3b (here reproduced for ease of comparison in panel b), the By values are equal and opposite. Data in the two panels are not symmetric upon inversion of the current direction. Instead, each data set is mapped into the other. The system is thus symmetric upon simultaneous inversion of current and in-plane magnetic field direction. Interestingly, all the Fraunhofer patterns here reported are symmetric upon inversion of Bz. This demonstrates that the diode effect is not due to non-homogeneous supercurrent density nor to an asymmetric SQUID effect46,47,48.

Source data

Extended Data Fig. 2 Higher harmonics in CPR and supercurrent diode effect.

a, Computed CPR for a short rectangular junction in the presence of selected value of the out-of-plane field Bz. The CPR at Bz = 0 is that described by the Beenakker-Furusaki equation with the parameters characterized in Ref. 13. b, Modulus of the first seven Fourier sine (bn) and cosine (an) coefficients for the Bz = 0 CPR. c, Out-of-plane magnetic field dependence of the modulus of the first three sine coefficients. d, Absolute value of the difference between the measured critical currents in the two direction for By = 75 mT (black symbols). Data are normalized to the value at Bz = 0. The graph refers to the same data as in Fig. 3d. The experimental values are in good approximation described by the product of the critical current Ic and the modulus of the second Fourier coefficient b2 (red line), both computed as a function of Bz. The former factor describes the magnitude of the critical current as a whole, while the latter quantifies how skewed the CPR is, and therefore the strength of the diode effect. Notice that the product Icb2 makes clear why the measured critical current difference goes to zero (i) for multiples of half flux quanta Φ0/2 and (ii) with (alternately) cusp-like and parabolic-like minima.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Discussion.

Source data

Source Data Fig. 1

ASCII data for the graphs in panels d–g of Fig. 1.

Source Data Fig. 2

ASCII data for the graphs in panels a–d of Fig. 2.

Source Data Fig. 3

ASCII data for the graphs in panels a–f of Fig. 3.

Source Data Fig. 4

ASCII data for the graphs in panels a–c of Fig. 4.

Source Data Extended Data Fig. 1

ASCII data for the graphs in panel a of Extended Data Fig. 1.

Source Data Extended Data Fig. 2

ASCII data for the graphs in panels a–d of Extended Data Fig. 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baumgartner, C., Fuchs, L., Costa, A. et al. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022). https://doi.org/10.1038/s41565-021-01009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01009-9

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research