Abstract
For the past three decades nanoscience has widely affected many areas in physics, chemistry and engineering, and has led to numerous fundamental discoveries, as well as applications and products. Concurrently, quantum science and technology has developed into a cross-disciplinary research endeavour connecting these same areas and holds burgeoning commercial promise. Although quantum physics dictates the behaviour of nanoscale objects, quantum coherence, which is central to quantum information, communication and sensing, has not played an explicit role in much of nanoscience. This Review describes fundamental principles and practical applications of quantum coherence in nanoscale systems, a research area we call quantum-coherent nanoscience. We structure this Review according to specific degrees of freedom that can be quantum-coherently controlled in a given nanoscale system, such as charge, spin, mechanical motion and photons. We review the current state of the art and focus on outstanding challenges and opportunities unlocked by the merging of nanoscience and coherent quantum operations.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Noisy intermediate-scale quantum computers
Frontiers of Physics Open Access 07 March 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Kastner, M. A. Artificial atoms. Phys. Today 46, 24–31 (1993).
Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals. Solid State Commun. 102, 165–173 (1997).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).
Hayashi, T., Fujisawa, T., Cheong, H. D., Jeong, Y. H. & Hirayama, Y. Coherent manipulation of electronic states in a double quantum dot. Phys. Rev. Lett. 91, 226804 (2003).
Yang, K. et al. Coherent spin manipulation of individual atoms on a surface. Science 366, 509–512 (2019). Experimental work on the coherent manipulation of individual spins on a surface in scanning probe microscopy.
He, Y. et al. A two-qubit gate between phosphorus donor electrons in silicon. Nature 571, 371–375 (2019).
Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201 (2007).
Dolde, F. et al. High-fidelity spin entanglement using optimal control. Nat. Commun. 5, 3371 (2014).
Dehollain, J. P. et al. Bell’s inequality violation with spins in silicon. Nat. Nanotechnol. 11, 242–246 (2016).
Nichol, J. M. et al. High-fidelity entangling gate for double-quantum-dot spin qubits. npj Quantum Inf. 3, 3 (2017).
Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).
Chatterjee, A. et al. Semiconductor qubits in practice. Nat. Rev. Phys. 3, 157–177 (2021).
Nakamura, Y., Chen, C. D. & Tsai, J. S. Spectroscopy of energy-level splitting between two macroscopic quantum states of charge coherently superposed by Josephson coupling. Phys. Rev. Lett. 79, 2328 (1997).
Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. H. Quantum coherence with a single Cooper pair. Phys. Scripta 76, 165 (1998).
Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).
Zaretskey, F. V. et al. Decoherence in a pair of long-lived Cooper-pair boxes. J. Appl. Phys. 114, 094305 (2013).
Rabl, P. et al. A quantum spin transducer based on nanoelectromechanical resonator arrays. Nat. Phys. 6, 602–608 (2010).
Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).
Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004). The ability to perform projective quantum measurement of a single electron spin by electrical means opened the door to the practical use of spins in semiconductor quantum devices.
Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).
Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).
Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).
Wu, Y., Wang, Y., Qin, X., Rong, X. & Du, J. A programmable two-qubit solid-state quantum processor under ambient conditions. npj Quantum Inf. 5, 9 (2019).
Watson, T. F. et al. Atomically engineered electron spin lifetimes of 30 s in silicon. Sci. Adv. 3, e1602811 (2017).
Anderson, C. P. et al. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science 366, 1225–1230 (2020).
Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).
Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).
Vandersypen, L. M. K. & Eriksson, M. A. Quantum computing with semiconductor spins. Phys. Today 72, 38–42 (2019).
Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014). Quantum-coherent control of an individual molecular spin in an electronic device.
Malavolti, L. et al. Tunable spin–superconductor coupling of spin 1/2 vanadyl phthalocyanine molecules. Nano Lett. 18, 7955–7961 (2018).
Bayliss, S. L. et al. Optically addressable molecular spins for quantum information processing. Science 370, 1309–1312 (2020).
Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).
Seifert, T. S. et al. Single-atom electron paramagnetic resonance in a scanning tunneling microscope driven by a radio-frequency antenna at 4 K. Phys. Rev. Res. 2, 013032 (2020).
Yale, C. G. et al. All-optical control of a solid-state spin using coherent dark states. Proc. Natl Acad. Sci. USA 110, 7595–7600 (2013).
Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).
Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).
Eng, K. et al. Isotopically enhanced triple-quantum-dot qubit. Sci. Adv. 1, e1500214 (2015).
Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).
Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015). Experimental demonstration of two-qubit logic operations in silicon, the same platform used for classical nanoelectronics.
Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).
Mills, A. R. et al. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nat. Commun. 10, 1063 (2019).
Xue, X. et al. Computing with spin qubits at the surface code error threshold. Preprint at https://arxiv.org/abs/2107.00628 (2021).
Takeda, K. et al. Quantum tomography of an entangled three-qubit state in silicon. Nat. Nanotechnol. 16, 965–969 (2021).
Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 (2021).
Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013).
Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9, 986–991 (2014).
Mądzik, M. T. et al. Precision tomography of a three-qubit electron-nuclear quantum processor in silicon. Preprint at https://arxiv.org/abs/2106.03082 (2021).
Mądzik, M. T. et al. Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device. Nat. Commun. 12, 181 (2020).
Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).
Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).
Myers, B. A. et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).
Smith, J. M., Meynell, S. A., Bleszynski Jayich, A. C. & Meijer, J. Colour centre generation in diamond for quantum technologies. Nanophotonics 8, 1889–1906 (2019).
Lado, J. L., Ferrón, A. & Fernández-Rossier, J. Exchange mechanism for electron paramagnetic resonance of individual adatoms. Phys. Rev. B 96, 205420 (2017).
Willke, P. et al. Probing quantum coherence in single atom electron spin resonance. Sci. Adv. 4, eaaq1543 (2018).
Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).
Zadrozny, J. M., Niklas, J., Poluektov, O. G. & Freedman, D. E. Millisecond coherence time in a tunable molecular electronic spin qubit. ACS Cent. Sci. 1, 488–492 (2015).
Atzori, M. et al. Room-temperature quantum coherence and Rabi oscillations in vanadyl phthalocyanine: toward nultifunctional molecular spin qubits. J. Am. Chem. Soc. 138, 2154–2157 (2016).
Liu, J. et al. Quantum coherent spin-electric control in a molecular nanomagnet at clock transitions. Nat. Phys. https://doi.org/10.1038/s41567-021-01355-4 (2021).
Moreno-Pineda, E. & Wernsdorfer, W. Measuring molecular magnets for quantum technologies. Nat. Rev. Phys. 3, 645–659 (2021).
Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).
Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).
Choi, D. et al. Colloquium: atomic spin chains on surfaces. Rev. Mod. Phys. 91, 041001 (2019).
Tacchino, F., Chiesa, A., Carretta, S. & Gerace, D. Quantum computers as universal quantum simulators: state‐of‐the‐art and perspectives. Adv. Quantum Technol. 3, 1900052 (2020).
Salfi, J. et al. Quantum simulation of the Hubbard model with dopant atoms in silicon. Nat. Commun. 7, 11342 (2016).
Yang, K. et al. Probing resonating valence bond states in artificial quantum magnets. Nat. Commun. 12, 993 (2021).
Dehollain, J. P. et al. Nagaoka ferromagnetism observed in a quantum dot plaquette. Nature 579, 528–533 (2020).
Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001 (2018).
Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).
Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020). Demonstration of state-of-the-art photonic circuits constructed by placing quantum microchips with diamond colour centres on top of aluminium nitride photonic waveguides.
Reiserer, A. & Gerhard Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).
Wada, O. Femtosecond all-optical devices for ultrafast communication and signal processing. N. J. Phys. 6, 183 (2004).
Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012).
Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).
You, L. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics 9, 2673 (2020).
Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).
Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).
D’Amico, I. et al. Nanoscale quantum optics. Riv. Nuovo Cim. 4, 153–195 (2019).
Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).
Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).
Bathen, M. E. & Vines, L. Manipulating single-photon emission from point defects in diamond and silicon carbide. Adv. Quantum Technol. 4, 2100003 (2021).
Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).
Reithmaier, G. et al. On-chip generation, routing, and detection of resonance fluorescence. Nano Lett. 15, 5208–5213 (2015).
Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2017).
Krauss, T. F. Why do we need slow light? Nat. Photon. 2, 448–450 (2008).
Burkard, G., Gullans, M. J., Mi, X. & Petta, J. R. Superconductor–semiconductor hybrid-circuit quantum electrodynamics. Nat. Rev. Phys. 2, 129–140 (2020).
Mamin, H. J. & Rugar, D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 79, 3358–3360 (2001).
Weber, P. et al. Force sensitivity of multilayer graphene optomechanical devices. Nat. Commun. 7, 12496 (2016).
Fogliano, F. et al. Ultrasensitive nano-optomechanical force sensor operated at dilution temperatures. Nat. Commun. 12, 4124 (2021).
Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304 (2012).
Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004). Breakthrough experimental results on measuring the dipolar magnetic force from a single electron spin.
Wollman, E. E., Lei, C. U., Weinstein, A. J. & Suh, J. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).
Shomroni, I., Qiu, L., Malz, D., Nunnenkamp, A. & Kippenberg, T. J. Optical backaction-evading measurement of a mechanical oscillator. Nat. Commun. 10, 2086 (2019).
Wu, M., Zeuthen, E., Balram, K. C. & Srinivasan, K. Microwave-to-optical transduction using a mechanical supermode for coupling piezoelectric and optomechanical resonators. Phys. Rev. Appl. 13, 014027 (2020).
O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010). Control of mechanical motion down to the last quantum of excitation in a nanostructured mechanical oscillator.
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).
Peterson, R. W. et al. Laser cooling of a micromechanical membrane to the quantum backaction limit. Phys. Rev. Lett. 116, 063601 (2016).
Zwickl, B. M. et al. High quality mechanical and optical properties of commercial silicon nitride membranes. Appl. Phys. Lett. 92, 103125 (2008).
Purdy, T. P., Yu, P.-L., Peterson, R. W., Kampel, N. S. & Rega, C. A. Strong optomechanical squeezing of light. Phys. Rev. X 3, 031012 (2013).
Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution. Nat. Nanotechnol. 12, 776–783 (2017).
Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ. Press, 1992).
Mason, D., Chen, J., Rossi, M., Tsaturyan, Y. & Schliesser, A. Continuous force and displacement measurement below the standard quantum limit. Nat. Phys. 15, 745–749 (2019).
Ganzhorn, M., Klyatskaya, S., Ruben, M. & Wernsdorfer, W. Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat. Nanotechnol. 8, 165–169 (2013).
Karg, T. M. et al. Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart. Science 369, 174–179 (2020).
Lee, D., Lee, K. W., Cady, J. V., Ovartchaiyapong, P. & Jayich, A. C. B. Topical review: spins and mechanics in diamond. J. Opt. 19, 033001 (2017).
Xiang, Z., Ashhab, S., You, J. Q. & Nori, F. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013).
Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).
Blais, A., Huang, R. S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).
Blais, A., Girvin, S. M. & Oliver, W. D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247–256 (2020).
Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004). Demonstration of strong coupling between a microwave photon and a superconducting circuit, enabling the hybridization of two disparate quantum systems.
Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011).
Wang, J. I.-J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).
Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).
Mi, X., Cady, J. V., Zajac, D. M., Deelman, P. W. & Petta, J. R. Strong coupling of a single electron in silicon to a microwave photon. Science 355, 156–158 (2017).
Mi, X. et al. A coherent spin-photon interface in silicon. Nature 555, 559–603 (2018).
Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018). Refs. 117,118 demonstrate hybrid quantum nanoelectronic devices in which an electron spin coherently couples to a microwave photon via the electron’s charge.
Landig, A. J. et al. Virtual-photon-mediated spin-qubit–transmon coupling. Nat. Commun. 10, 5037 (2019).
Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425–428 (2020).
Rosenberg, D. et al. 3D integration and packaging for solid-state qubits. IEEE Microw. Mag. 21, 72–86 (2020).
Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).
Fittipaldi, M. et al. Electric field modulation of magnetic exchange in molecular helices. Nat. Mater. 18, 329–334 (2019).
Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).
Wineland, D. J. Nobel lecture: superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103–1114 (2013).
Dowling, J. P. & Milburn, Gerard J. Quantum technology: the second quantum revolution. Phil. Trans. R. Soc. A 361, 1655–1674 (2003).
MacQuarrie, E. R. et al. Progress toward a capacitively mediated CNOT between two charge qubits in Si/SiGe. npj Quantum Inf. 6, 81 (2020).
Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotechnol. 11, 700–705 (2016).
Wilkinson, T. A. et al. Spin-selective AC Stark shifts in a charged quantum dot. Appl. Phys. Lett. 114, 133104 (2019).
Press, D. et al. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).
Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010).
Tamarat, P. Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond. N. J. Phys. 10, 045004 (2008).
Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).
Acknowledgements
A.J.H. acknowledges financial support from the Institute for Basic Science under grant number IBS-R027-D1. W.D.O. received funding from the US Army Research Office under grant number W911WF-18-1-0116 and the National Science Foundation under grant number PHY-1720311. L.M.K.V. received funding from the European Research Council (grant number 882848) and A.A. from the UK Engineering and Physical Sciences Research Council (grant number EP/P000479/1) and the European Union’s Horizon 2020 research and innovation programme under grant agreement numbers 863098 and 862893. R.S. was funded by EU-H2020 research project number 862893. A.B.J. received funding from NSF award number QIS-1820938 and the NSF QLCI through grant number OMA-2016245. J.F.-R. was funded by Generalitat Valenciana funding Prometeo 2017/139 and MINECO-Spain (grant number PID2019-109539GB); A.L. by the UNSW Scientia Program; and A.M. by the Australian Research Council (grant numbers CE170100012 and DP180100969), the US Army Research Office (grant number W911NF-17-1-0200) and the Australian Department of Industry, Innovation and Science (grant number AUSMURI00002). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the ARO or the US government. The US government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation herein.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Nanotechnology thanks Xavier Jehl and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Heinrich, A.J., Oliver, W.D., Vandersypen, L.M.K. et al. Quantum-coherent nanoscience. Nat. Nanotechnol. 16, 1318–1329 (2021). https://doi.org/10.1038/s41565-021-00994-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-021-00994-1
This article is cited by
-
Noisy intermediate-scale quantum computers
Frontiers of Physics (2023)