Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum-coherent nanoscience

Abstract

For the past three decades nanoscience has widely affected many areas in physics, chemistry and engineering, and has led to numerous fundamental discoveries, as well as applications and products. Concurrently, quantum science and technology has developed into a cross-disciplinary research endeavour connecting these same areas and holds burgeoning commercial promise. Although quantum physics dictates the behaviour of nanoscale objects, quantum coherence, which is central to quantum information, communication and sensing, has not played an explicit role in much of nanoscience. This Review describes fundamental principles and practical applications of quantum coherence in nanoscale systems, a research area we call quantum-coherent nanoscience. We structure this Review according to specific degrees of freedom that can be quantum-coherently controlled in a given nanoscale system, such as charge, spin, mechanical motion and photons. We review the current state of the art and focus on outstanding challenges and opportunities unlocked by the merging of nanoscience and coherent quantum operations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ultrafast coherent control of two charge qubits in quantum dots.
Fig. 2: Quantum-coherent operation of two spin qubits in lithographically defined nanostructures.
Fig. 3: Quantum-coherent control of the spin DOF of atomic and molecular spin bits.
Fig. 4: Nanoscale quantum photonics.
Fig. 5: Nanomechanical resonator at the quantum limit.
Fig. 6: Photon–charge–spin hybrid quantum device.

Similar content being viewed by others

References

  1. Kastner, M. A. Artificial atoms. Phys. Today 46, 24–31 (1993).

    Article  CAS  Google Scholar 

  2. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals. Solid State Commun. 102, 165–173 (1997).

    Article  CAS  Google Scholar 

  3. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  Google Scholar 

  4. MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

    Article  CAS  Google Scholar 

  5. Hayashi, T., Fujisawa, T., Cheong, H. D., Jeong, Y. H. & Hirayama, Y. Coherent manipulation of electronic states in a double quantum dot. Phys. Rev. Lett. 91, 226804 (2003).

    Article  CAS  Google Scholar 

  6. Yang, K. et al. Coherent spin manipulation of individual atoms on a surface. Science 366, 509–512 (2019). Experimental work on the coherent manipulation of individual spins on a surface in scanning probe microscopy.

    Article  CAS  Google Scholar 

  7. He, Y. et al. A two-qubit gate between phosphorus donor electrons in silicon. Nature 571, 371–375 (2019).

    Article  CAS  Google Scholar 

  8. Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201 (2007).

    Article  Google Scholar 

  9. Dolde, F. et al. High-fidelity spin entanglement using optimal control. Nat. Commun. 5, 3371 (2014).

    Article  Google Scholar 

  10. Dehollain, J. P. et al. Bell’s inequality violation with spins in silicon. Nat. Nanotechnol. 11, 242–246 (2016).

    Article  CAS  Google Scholar 

  11. Nichol, J. M. et al. High-fidelity entangling gate for double-quantum-dot spin qubits. npj Quantum Inf. 3, 3 (2017).

    Article  Google Scholar 

  12. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  CAS  Google Scholar 

  13. Chatterjee, A. et al. Semiconductor qubits in practice. Nat. Rev. Phys. 3, 157–177 (2021).

    Article  Google Scholar 

  14. Nakamura, Y., Chen, C. D. & Tsai, J. S. Spectroscopy of energy-level splitting between two macroscopic quantum states of charge coherently superposed by Josephson coupling. Phys. Rev. Lett. 79, 2328 (1997).

    Article  CAS  Google Scholar 

  15. Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. H. Quantum coherence with a single Cooper pair. Phys. Scripta 76, 165 (1998).

    Article  Google Scholar 

  16. Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    Article  CAS  Google Scholar 

  17. Zaretskey, F. V. et al. Decoherence in a pair of long-lived Cooper-pair boxes. J. Appl. Phys. 114, 094305 (2013).

    Article  Google Scholar 

  18. Rabl, P. et al. A quantum spin transducer based on nanoelectromechanical resonator arrays. Nat. Phys. 6, 602–608 (2010).

    Article  CAS  Google Scholar 

  19. Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).

    Article  CAS  Google Scholar 

  20. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004). The ability to perform projective quantum measurement of a single electron spin by electrical means opened the door to the practical use of spins in semiconductor quantum devices.

    Article  CAS  Google Scholar 

  21. Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    Article  CAS  Google Scholar 

  22. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article  Google Scholar 

  23. Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    Article  Google Scholar 

  24. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  CAS  Google Scholar 

  25. Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    Article  CAS  Google Scholar 

  26. Wu, Y., Wang, Y., Qin, X., Rong, X. & Du, J. A programmable two-qubit solid-state quantum processor under ambient conditions. npj Quantum Inf. 5, 9 (2019).

    Article  Google Scholar 

  27. Watson, T. F. et al. Atomically engineered electron spin lifetimes of 30 s in silicon. Sci. Adv. 3, e1602811 (2017).

    Article  Google Scholar 

  28. Anderson, C. P. et al. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science 366, 1225–1230 (2020).

    Article  Google Scholar 

  29. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).

    Article  CAS  Google Scholar 

  30. Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).

    Article  CAS  Google Scholar 

  31. Vandersypen, L. M. K. & Eriksson, M. A. Quantum computing with semiconductor spins. Phys. Today 72, 38–42 (2019).

    Article  CAS  Google Scholar 

  32. Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014). Quantum-coherent control of an individual molecular spin in an electronic device.

    Article  CAS  Google Scholar 

  33. Malavolti, L. et al. Tunable spin–superconductor coupling of spin 1/2 vanadyl phthalocyanine molecules. Nano Lett. 18, 7955–7961 (2018).

    Article  CAS  Google Scholar 

  34. Bayliss, S. L. et al. Optically addressable molecular spins for quantum information processing. Science 370, 1309–1312 (2020).

    Article  CAS  Google Scholar 

  35. Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).

    Article  CAS  Google Scholar 

  36. Seifert, T. S. et al. Single-atom electron paramagnetic resonance in a scanning tunneling microscope driven by a radio-frequency antenna at 4 K. Phys. Rev. Res. 2, 013032 (2020).

    Article  CAS  Google Scholar 

  37. Yale, C. G. et al. All-optical control of a solid-state spin using coherent dark states. Proc. Natl Acad. Sci. USA 110, 7595–7600 (2013).

    Article  CAS  Google Scholar 

  38. Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

    Article  CAS  Google Scholar 

  39. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  40. Eng, K. et al. Isotopically enhanced triple-quantum-dot qubit. Sci. Adv. 1, e1500214 (2015).

    Article  Google Scholar 

  41. Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

    Article  CAS  Google Scholar 

  42. Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015). Experimental demonstration of two-qubit logic operations in silicon, the same platform used for classical nanoelectronics.

    Article  CAS  Google Scholar 

  43. Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

    Article  CAS  Google Scholar 

  44. Mills, A. R. et al. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nat. Commun. 10, 1063 (2019).

    Article  CAS  Google Scholar 

  45. Xue, X. et al. Computing with spin qubits at the surface code error threshold. Preprint at https://arxiv.org/abs/2107.00628 (2021).

  46. Takeda, K. et al. Quantum tomography of an entangled three-qubit state in silicon. Nat. Nanotechnol. 16, 965–969 (2021).

    Article  CAS  Google Scholar 

  47. Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 (2021).

    Article  CAS  Google Scholar 

  48. Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013).

    Article  CAS  Google Scholar 

  49. Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9, 986–991 (2014).

    Article  CAS  Google Scholar 

  50. Mądzik, M. T. et al. Precision tomography of a three-qubit electron-nuclear quantum processor in silicon. Preprint at https://arxiv.org/abs/2106.03082 (2021).

  51. Mądzik, M. T. et al. Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device. Nat. Commun. 12, 181 (2020).

    Article  Google Scholar 

  52. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  CAS  Google Scholar 

  53. Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).

    CAS  Google Scholar 

  54. Myers, B. A. et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).

    Article  CAS  Google Scholar 

  55. Smith, J. M., Meynell, S. A., Bleszynski Jayich, A. C. & Meijer, J. Colour centre generation in diamond for quantum technologies. Nanophotonics 8, 1889–1906 (2019).

    Article  CAS  Google Scholar 

  56. Lado, J. L., Ferrón, A. & Fernández-Rossier, J. Exchange mechanism for electron paramagnetic resonance of individual adatoms. Phys. Rev. B 96, 205420 (2017).

    Article  Google Scholar 

  57. Willke, P. et al. Probing quantum coherence in single atom electron spin resonance. Sci. Adv. 4, eaaq1543 (2018).

    Article  Google Scholar 

  58. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    Article  CAS  Google Scholar 

  59. Zadrozny, J. M., Niklas, J., Poluektov, O. G. & Freedman, D. E. Millisecond coherence time in a tunable molecular electronic spin qubit. ACS Cent. Sci. 1, 488–492 (2015).

    Article  CAS  Google Scholar 

  60. Atzori, M. et al. Room-temperature quantum coherence and Rabi oscillations in vanadyl phthalocyanine: toward nultifunctional molecular spin qubits. J. Am. Chem. Soc. 138, 2154–2157 (2016).

    Article  CAS  Google Scholar 

  61. Liu, J. et al. Quantum coherent spin-electric control in a molecular nanomagnet at clock transitions. Nat. Phys. https://doi.org/10.1038/s41567-021-01355-4 (2021).

  62. Moreno-Pineda, E. & Wernsdorfer, W. Measuring molecular magnets for quantum technologies. Nat. Rev. Phys. 3, 645–659 (2021).

    Article  CAS  Google Scholar 

  63. Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    Article  Google Scholar 

  64. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article  CAS  Google Scholar 

  65. Choi, D. et al. Colloquium: atomic spin chains on surfaces. Rev. Mod. Phys. 91, 041001 (2019).

    Article  CAS  Google Scholar 

  66. Tacchino, F., Chiesa, A., Carretta, S. & Gerace, D. Quantum computers as universal quantum simulators: state‐of‐the‐art and perspectives. Adv. Quantum Technol. 3, 1900052 (2020).

    Article  Google Scholar 

  67. Salfi, J. et al. Quantum simulation of the Hubbard model with dopant atoms in silicon. Nat. Commun. 7, 11342 (2016).

    Article  CAS  Google Scholar 

  68. Yang, K. et al. Probing resonating valence bond states in artificial quantum magnets. Nat. Commun. 12, 993 (2021).

    Article  CAS  Google Scholar 

  69. Dehollain, J. P. et al. Nagaoka ferromagnetism observed in a quantum dot plaquette. Nature 579, 528–533 (2020).

    Article  CAS  Google Scholar 

  70. Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001 (2018).

    Article  Google Scholar 

  71. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  Google Scholar 

  72. Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020). Demonstration of state-of-the-art photonic circuits constructed by placing quantum microchips with diamond colour centres on top of aluminium nitride photonic waveguides.

    Article  CAS  Google Scholar 

  73. Reiserer, A. & Gerhard Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).

    Article  CAS  Google Scholar 

  74. Wada, O. Femtosecond all-optical devices for ultrafast communication and signal processing. N. J. Phys. 6, 183 (2004).

    Article  Google Scholar 

  75. Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012).

    Article  Google Scholar 

  76. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  CAS  Google Scholar 

  77. You, L. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics 9, 2673 (2020).

    Article  CAS  Google Scholar 

  78. Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).

    Article  CAS  Google Scholar 

  79. Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article  CAS  Google Scholar 

  80. D’Amico, I. et al. Nanoscale quantum optics. Riv. Nuovo Cim. 4, 153–195 (2019).

    Google Scholar 

  81. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    Article  CAS  Google Scholar 

  82. Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).

    Article  Google Scholar 

  83. Bathen, M. E. & Vines, L. Manipulating single-photon emission from point defects in diamond and silicon carbide. Adv. Quantum Technol. 4, 2100003 (2021).

  84. Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

    Article  CAS  Google Scholar 

  85. Reithmaier, G. et al. On-chip generation, routing, and detection of resonance fluorescence. Nano Lett. 15, 5208–5213 (2015).

    Article  CAS  Google Scholar 

  86. Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2017).

  87. Krauss, T. F. Why do we need slow light? Nat. Photon. 2, 448–450 (2008).

    Article  CAS  Google Scholar 

  88. Burkard, G., Gullans, M. J., Mi, X. & Petta, J. R. Superconductor–semiconductor hybrid-circuit quantum electrodynamics. Nat. Rev. Phys. 2, 129–140 (2020).

    Article  Google Scholar 

  89. Mamin, H. J. & Rugar, D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 79, 3358–3360 (2001).

    Article  CAS  Google Scholar 

  90. Weber, P. et al. Force sensitivity of multilayer graphene optomechanical devices. Nat. Commun. 7, 12496 (2016).

    Article  CAS  Google Scholar 

  91. Fogliano, F. et al. Ultrasensitive nano-optomechanical force sensor operated at dilution temperatures. Nat. Commun. 12, 4124 (2021).

    Article  CAS  Google Scholar 

  92. Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304 (2012).

    Article  CAS  Google Scholar 

  93. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004). Breakthrough experimental results on measuring the dipolar magnetic force from a single electron spin.

    Article  CAS  Google Scholar 

  94. Wollman, E. E., Lei, C. U., Weinstein, A. J. & Suh, J. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).

    Article  CAS  Google Scholar 

  95. Shomroni, I., Qiu, L., Malz, D., Nunnenkamp, A. & Kippenberg, T. J. Optical backaction-evading measurement of a mechanical oscillator. Nat. Commun. 10, 2086 (2019).

    Article  Google Scholar 

  96. Wu, M., Zeuthen, E., Balram, K. C. & Srinivasan, K. Microwave-to-optical transduction using a mechanical supermode for coupling piezoelectric and optomechanical resonators. Phys. Rev. Appl. 13, 014027 (2020).

    Article  CAS  Google Scholar 

  97. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010). Control of mechanical motion down to the last quantum of excitation in a nanostructured mechanical oscillator.

    Article  Google Scholar 

  98. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  CAS  Google Scholar 

  99. Peterson, R. W. et al. Laser cooling of a micromechanical membrane to the quantum backaction limit. Phys. Rev. Lett. 116, 063601 (2016).

    Article  CAS  Google Scholar 

  100. Zwickl, B. M. et al. High quality mechanical and optical properties of commercial silicon nitride membranes. Appl. Phys. Lett. 92, 103125 (2008).

    Article  Google Scholar 

  101. Purdy, T. P., Yu, P.-L., Peterson, R. W., Kampel, N. S. & Rega, C. A. Strong optomechanical squeezing of light. Phys. Rev. X 3, 031012 (2013).

    CAS  Google Scholar 

  102. Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution. Nat. Nanotechnol. 12, 776–783 (2017).

    Article  CAS  Google Scholar 

  103. Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ. Press, 1992).

  104. Mason, D., Chen, J., Rossi, M., Tsaturyan, Y. & Schliesser, A. Continuous force and displacement measurement below the standard quantum limit. Nat. Phys. 15, 745–749 (2019).

    Article  CAS  Google Scholar 

  105. Ganzhorn, M., Klyatskaya, S., Ruben, M. & Wernsdorfer, W. Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat. Nanotechnol. 8, 165–169 (2013).

    Article  CAS  Google Scholar 

  106. Karg, T. M. et al. Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart. Science 369, 174–179 (2020).

    Article  CAS  Google Scholar 

  107. Lee, D., Lee, K. W., Cady, J. V., Ovartchaiyapong, P. & Jayich, A. C. B. Topical review: spins and mechanics in diamond. J. Opt. 19, 033001 (2017).

    Article  Google Scholar 

  108. Xiang, Z., Ashhab, S., You, J. Q. & Nori, F. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013).

    Article  CAS  Google Scholar 

  109. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    Article  CAS  Google Scholar 

  110. Blais, A., Huang, R. S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

    Article  Google Scholar 

  111. Blais, A., Girvin, S. M. & Oliver, W. D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247–256 (2020).

    Article  CAS  Google Scholar 

  112. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004). Demonstration of strong coupling between a microwave photon and a superconducting circuit, enabling the hybridization of two disparate quantum systems.

    Article  CAS  Google Scholar 

  113. Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011).

    Article  Google Scholar 

  114. Wang, J. I.-J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    Article  CAS  Google Scholar 

  115. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  CAS  Google Scholar 

  116. Mi, X., Cady, J. V., Zajac, D. M., Deelman, P. W. & Petta, J. R. Strong coupling of a single electron in silicon to a microwave photon. Science 355, 156–158 (2017).

    Article  CAS  Google Scholar 

  117. Mi, X. et al. A coherent spin-photon interface in silicon. Nature 555, 559–603 (2018).

    Article  Google Scholar 

  118. Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018). Refs. 117,118 demonstrate hybrid quantum nanoelectronic devices in which an electron spin coherently couples to a microwave photon via the electron’s charge.

    Article  CAS  Google Scholar 

  119. Landig, A. J. et al. Virtual-photon-mediated spin-qubit–transmon coupling. Nat. Commun. 10, 5037 (2019).

    Article  CAS  Google Scholar 

  120. Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425–428 (2020).

    Article  CAS  Google Scholar 

  121. Rosenberg, D. et al. 3D integration and packaging for solid-state qubits. IEEE Microw. Mag. 21, 72–86 (2020).

    Article  Google Scholar 

  122. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  123. Fittipaldi, M. et al. Electric field modulation of magnetic exchange in molecular helices. Nat. Mater. 18, 329–334 (2019).

    Article  CAS  Google Scholar 

  124. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  125. Wineland, D. J. Nobel lecture: superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103–1114 (2013).

    Article  CAS  Google Scholar 

  126. Dowling, J. P. & Milburn, Gerard J. Quantum technology: the second quantum revolution. Phil. Trans. R. Soc. A 361, 1655–1674 (2003).

    Article  Google Scholar 

  127. MacQuarrie, E. R. et al. Progress toward a capacitively mediated CNOT between two charge qubits in Si/SiGe. npj Quantum Inf. 6, 81 (2020).

    Article  Google Scholar 

  128. Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotechnol. 11, 700–705 (2016).

    Article  CAS  Google Scholar 

  129. Wilkinson, T. A. et al. Spin-selective AC Stark shifts in a charged quantum dot. Appl. Phys. Lett. 114, 133104 (2019).

    Article  Google Scholar 

  130. Press, D. et al. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  CAS  Google Scholar 

  131. Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010).

    Article  CAS  Google Scholar 

  132. Tamarat, P. Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond. N. J. Phys. 10, 045004 (2008).

    Article  Google Scholar 

  133. Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.J.H. acknowledges financial support from the Institute for Basic Science under grant number IBS-R027-D1. W.D.O. received funding from the US Army Research Office under grant number W911WF-18-1-0116 and the National Science Foundation under grant number PHY-1720311. L.M.K.V. received funding from the European Research Council (grant number 882848) and A.A. from the UK Engineering and Physical Sciences Research Council (grant number EP/P000479/1) and the European Union’s Horizon 2020 research and innovation programme under grant agreement numbers 863098 and 862893. R.S. was funded by EU-H2020 research project number 862893. A.B.J. received funding from NSF award number QIS-1820938 and the NSF QLCI through grant number OMA-2016245. J.F.-R. was funded by Generalitat Valenciana funding Prometeo 2017/139 and MINECO-Spain (grant number PID2019-109539GB); A.L. by the UNSW Scientia Program; and A.M. by the Australian Research Council (grant numbers CE170100012 and DP180100969), the US Army Research Office (grant number W911NF-17-1-0200) and the Australian Department of Industry, Innovation and Science (grant number AUSMURI00002). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the ARO or the US government. The US government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreas J. Heinrich or Andrea Morello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Xavier Jehl and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinrich, A.J., Oliver, W.D., Vandersypen, L.M.K. et al. Quantum-coherent nanoscience. Nat. Nanotechnol. 16, 1318–1329 (2021). https://doi.org/10.1038/s41565-021-00994-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00994-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing