Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking

Abstract

Metasurface-based optical elements typically manipulate light waves by imparting space-variant changes in the amplitude and phase with a dense array of scattering nanostructures. The highly localized and low optical-quality-factor (Q) modes of nanostructures are beneficial for wavefront shaping as they afford quasi-local control over the electromagnetic fields. However, many emerging imaging, sensing, communication, display and nonlinear optics applications instead require flat, high-Q optical elements that provide substantial energy storage and a much higher degree of spectral control over the wavefront. Here, we demonstrate high-Q, non-local metasurfaces with atomically thin metasurface elements that offer notably enhanced light–matter interaction and fully decoupled optical functions at different wavelengths. We illustrate a possible use of such a flat optic in eye tracking for eyewear. Here, a metasurface patterned on a regular pair of eye glasses provides an unperturbed view of the world across the visible spectrum and redirects near-infrared light to a camera to allow imaging of the eye.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A high-Q GMR metasurface facilitates decoupled optical functions at different wavelengths and optical ET without rainbows.
Fig. 2: Spectrally selective resonant diffraction mechanism of a GMR metasurface.
Fig. 3: Experimental realization of the spectrally selective high-Q GMR metasurface and spectrally decoupled optical diffraction between NIR and VIS spectral regions.
Fig. 4: Optical ET prototype demonstration.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ando, T., Matsumoto, T., Takahashi, H. & Shimizu, E. Holographic optical element for head-mounted display application using photopolymer. Mem. Fac. Eng. Osaka City Univ. 40, 1–6 (1999).

    Google Scholar 

  2. Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 13, 390–396 (2019).

    Article  CAS  Google Scholar 

  3. Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36, 85 (2017).

    Article  Google Scholar 

  4. Aiki, K. et al. A full-color eyewear display using planar waveguides with reflection volume holograms. J. Soc. Inf. Disp. 17, 185–193 (2009).

    Article  Google Scholar 

  5. Chen, H. T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).

    Article  Google Scholar 

  6. Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, 1146–1153 (2017).

    Article  CAS  Google Scholar 

  7. Hsiao, H.-H., Chu, C. H. & Tsai, D. P. Fundamentals and applications of metasurfaces. Small Methods 1, 1600064 (2017).

    Article  Google Scholar 

  8. Kamali, S. M. et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X 7, 041056 (2017).

    Google Scholar 

  9. Maguid, E. et al. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light. Sci. Appl. 6, e17027 (2017).

    Article  Google Scholar 

  10. Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).

    Article  Google Scholar 

  11. Liang, H. et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 18, 4460–4466 (2018).

    Article  CAS  Google Scholar 

  12. Chen, M. K. et al. Principles, functions, and applications of optical meta-lens. Adv. Opt. Mater. 9, 2001414 (2021).

    Article  CAS  Google Scholar 

  13. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  CAS  Google Scholar 

  14. Shrestha, S., Overvig, A. C., Lu, M., Stein, A. & Yu, N. Broadband achromatic dielectric metalenses. Light. Sci. Appl. 7, 85 (2018).

    Article  Google Scholar 

  15. Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

    Article  CAS  Google Scholar 

  16. Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227–231 (2019).

    Article  CAS  Google Scholar 

  17. Holsteen, A. L., Lin, D., Kauvar, I., Wetzstein, G. & Brongersma, M. L. A light-field metasurface for high-resolution single-particle tracking. Nano Lett. 19, 2267–2271 (2019).

    Article  CAS  Google Scholar 

  18. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light Ch. 10 (Princeton Univ. Press, 2008).

  19. Hessel, A. & Oliner, A. A. A new theory of Wood’s anomalies on optical gratings. Appl. Opt. 4, 1275–1297 (1965).

    Article  Google Scholar 

  20. Wang, S. S. & Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 32, 2606–2613 (2009).

    Article  Google Scholar 

  21. Magnusson, R., Shin, D. & Liu, Z. S. Guided-mode resonance Brewster filter. Opt. Lett. 23, 612–614 (2008).

    Article  Google Scholar 

  22. Wang, S. S., Moharam, M. G., Magnusson, R. & Bagby, J. S. Guided-mode resonances in planar dielectric-layer diffraction gratings. J. Opt. Soc. Am. A 7, 1470–1474 (1990).

    Article  Google Scholar 

  23. Quaranta, G., Basset, G., Martin, O. J. F. & Gallinet, B. Recent advances in resonant waveguide gratings. Laser Photonics Rev. 12, 1800017 (2018).

    Article  Google Scholar 

  24. Savinov, V. & Zheludev, N. I. High-quality metamaterial dispersive grating on the facet of an optical fiber. Appl. Phys. Lett. 111, 091106 (2017).

    Article  Google Scholar 

  25. Lawrence, M. et al. High quality factor phase gradient metasurfaces. Nat. Nanotechnol. 15, 956–961 (2020).

    Article  CAS  Google Scholar 

  26. Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).

    Article  CAS  Google Scholar 

  27. Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018).

    Article  Google Scholar 

  28. Overvig, A. C., Malek, S. C. & Yu, N. Multifunctional nonlocal metasurfaces. Phys. Rev. Lett. 125, 017402 (2020).

    Article  CAS  Google Scholar 

  29. Malek, S. C., Overvig, A. C., Shrestha, S. & Yu, N. Active nonlocal metasurfaces. Nanophotonics 10, 655–665 (2021).

    Article  Google Scholar 

  30. Duchowski, A. Eye Tracking Methodology: Theory and Practice Ch. 20–24 (Springer, 2009).

  31. Cognolato, M., Atzori, M. & Müller, H. Head-mounted eye gaze tracking devices: an overview of modern devices and recent advances. J. Rehabil. Assist. Technol. Eng. 5, 1–13 (2018).

    Google Scholar 

  32. Richardson, D. & Spivey, M. in Encyclopedia of Biomaterials and Biomedical Engineering 2nd edn (eds Wnek, G. & Bowlin, G.) 1028–1032 (CRC Press, 2008).

  33. Yarbus, A. L. Eye Movements During Change of Stationary Points of Fixation in Space Ch. 7 (Plenum Press, 1967).

  34. Lee, J., Cheng, I., Hua, H. & Wu, S. Introduction to Flat Panel Displays Ch. 8 (John Wiley & Sons, 2020).

  35. Mirza, K. & Sarayeddine, K. Key challenges to affordable see through wearable displays: the missing link for mobile AR mass deployment. Optivent SA, Rennes, Fr. 33, 1–6 (2012).

    Google Scholar 

  36. Lee, G. Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018).

    Article  Google Scholar 

  37. Sanjeev, V. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2017).

    Google Scholar 

  38. Li, Z. et al. Full-space cloud of random points with a scrambling metasurface. Light Sci. Appl. 7, 63 (2018).

    Article  Google Scholar 

  39. Xue, M. et al. Free-standing 2.7 μm thick ultrathin crystalline silicon solar cell with efficiency above 12.0%. Nano Energy 70, 104466 (2020).

    Article  CAS  Google Scholar 

  40. Liu, C., Pazzucconi, B., Liu, J., Liu, L. & Yao, X. A holographic waveguide based eye tracking device. J. Mod. Opt. 66, 1311–1317 (2019).

    Article  Google Scholar 

  41. Miller, D. A. B. Sorting out light. Science 347, 1423–1424 (2015).

    Article  CAS  Google Scholar 

  42. Shen, Y. et al. Optical broadband angular selectivity. Science 343, 1499–1501 (2014).

    Article  CAS  Google Scholar 

  43. Molesky, S. et al. Inverse design in nanophotonics. Nat. Photon. 12, 659–670 (2018).

    Article  CAS  Google Scholar 

  44. Aspnes, D. E. & Studna, A. A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27, 985–1009 (1983).

    Article  CAS  Google Scholar 

  45. Harvey, J. E., Bogunovic, D. & Krywonos, A. Aberrations of diffracted wave fields: distortion. Appl. Opt. 42, 1167–1174 (2003).

    Article  Google Scholar 

  46. Mahajan, V. N. Aberrations of diffracted wave fields I. Diffraction gratings. J. Opt. Soc. Am. A 17, 2223–2228 (2000).

    Article  CAS  Google Scholar 

  47. Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–164 (2014).

    Article  CAS  Google Scholar 

  48. Kwon, H., Sounas, D., Cordaro, A., Polman, A. & Alù, A. Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett. 121, 173004 (2018).

    Article  CAS  Google Scholar 

  49. Guo, C., Xiao, M., Minkov, M., Shi, Y. & Fan, S. Photonic crystal slab Laplace operator for image differentiation. Optica 5, 251–256 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge useful discussions with P. St. Hilaire and D. Lin. This work was supported by the US Air Force (grant no. FA9550-17-1-0331) and funding from Magic Leap. Part of this work was performed at the Nano@Stanford labs, supported by the National Science Foundation under award ECCS-1542152. J.-H.S. is supported by Basic Science Research Programme through the National Research Foundation of Korea (grant no. NRF-2016R1A6A3A03012480). J.v.d.G. is supported by a Rubicon Fellowship from the Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO).

Author information

Authors and Affiliations

Authors

Contributions

J.-H.S. and M.L.B. conceived the research plan. J.-H.S., J.v.d.G. and S.J.K. fabricated the samples and performed all optical measurements. J.-H.S., J.v.d.G. and M.L.B. performed the data analysis and calculations. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Mark L. Brongersma.

Ethics declarations

Competing interests

J.-H.S. and M.L.B. have a granted US patent on the topic of this paper (JH Song, ML Brongersma—US patent 10,890,772,2021). The other authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Liang Gao, Barry Silverstein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text sections 1–17, Figs. 1–19 and Table 1.

Supplementary Video

A real-time movie showing the diffractive, live imaging of an artificial eye taken by the ET prototype in Fig. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, JH., van de Groep, J., Kim, S.J. et al. Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking. Nat. Nanotechnol. 16, 1224–1230 (2021). https://doi.org/10.1038/s41565-021-00967-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00967-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing