Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix

Abstract

Two-dimensional materials are promising candidates for future electronics due to unmatched device performance at atomic limit and low-temperature heterogeneous integration. To adopt these emerging materials in computing and optoelectronic systems, back end of line (BEOL) integration with mainstream technologies is needed. Here, we show the integration of large-area MoS2 thin-film transistors (TFTs) with nitride micro light-emitting diodes (LEDs) through a BEOL process and demonstrate high-resolution displays. The MoS2 transistors exhibit median mobility of 54 cm2 V−1s −1, 210 μA μm−1 drive current and excellent uniformity. The TFTs can drive micrometre-sized LEDs to 7.1 × 107 cd m2 luminance under low voltage. Comprehensive analysis on driving capability, response time, power consumption and modulation scheme indicates that MoS2 TFTs are suitable for a range of display applications up to the high resolution and brightness limit. We further demonstrate prototypical 32 × 32 active-matrix displays at 1,270 pixels-per-inch resolution. Moreover, our process is fully monolithic, low-temperature, scalable and compatible with microelectronic processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Monolithic integration of MoS2 TFTs with micro-LEDs.
Fig. 2: MoS2 transistor performance.
Fig. 3: Driving individual micro-LEDs by MoS2 TFTs.
Fig. 4: High-resolution AM micro-LED displays.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other finding of this study are available from the corresponding author on reasonable request.

Code availability

All code used in this work is available from the corresponding author on reasonable request.

References

  1. Nakamura, S., Senoh, M. & Mukai, T. High‐power InGaN/GaN double‐heterostructure violet light emitting diodes. Appl. Phys. Lett. 62, 2390–2392 (1993).

    Article  CAS  Google Scholar 

  2. Li, G. et al. GaN-based light-emitting diodes on various substrates: a critical review. Rep. Prog. Phys. 79, 056501 (2016).

    Article  Google Scholar 

  3. Global Packaged GaN LED Market Report (Market Reports World, 2019); https://www.marketreportsworld.com/-global-packaged-gan-led-market-14194592

  4. Jin, S. X., Li, J., Li, J. Z., Lin, J. Y. & Jiang, H. X. GaN microdisk light emitting diodes. Appl. Phys. Lett. 76, 631–633 (2000).

    Article  CAS  Google Scholar 

  5. Yuan, Y. F. et al. Potential key technologies for 6G mobile communications. Sci. China Inf. Sci. 63, 183301 (2020).

    Article  Google Scholar 

  6. Lin, J. Y. & Jiang, H. X. Development of microLED. Appl. Phys. Lett. 116, 100502 (2020).

    Article  CAS  Google Scholar 

  7. Wong, M. S., Nakamura, S. & DenBaars, S. P. Review—progress in high performance III-nitride micro-light-emitting diodes. ECS J. Solid State Sci. Technol. 9, 015012 (2019).

    Article  Google Scholar 

  8. Huang, Y., Hsiang, E.-L., Deng, M.-Y. & Wu, S.-T. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9, 105 (2020).

    Article  CAS  Google Scholar 

  9. Liu, Z., Chong, W. C., Wong, K. M. & Lau, K. M. GaN-based LED micro-displays for wearable applications. Microelectron. Eng. 148, 98–103 (2015).

    Article  CAS  Google Scholar 

  10. Park, S.-I. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009).

    Article  CAS  Google Scholar 

  11. Liu, Z. J., Chong, W. C., Wong, K. M. & Lau, K. M. 360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon (LEDoS) micro-displays. J. Disp. Technol. 9, 678–682 (2013).

    Article  CAS  Google Scholar 

  12. Cok, R. S. et al. Inorganic light-emitting diode displays using micro-transfer printing. J. Soc. Inf. Disp. 25, 589–609 (2017).

    Article  CAS  Google Scholar 

  13. Zhang, L., Ou, F., Chong, W. C., Chen, Y. & Li, Q. Wafer-scale monolithic hybrid integration of Si-based IC and III–V epi-layers—a mass manufacturable approach for active matrix micro-LED micro-displays. J. Soc. Inf. Disp. 26, 137–145 (2018).

    Article  CAS  Google Scholar 

  14. Tull, B. R. et al. 26.2: Invited paper: high brightness, emissive microdisplay by integration of III‐V LEDs with thin film silicon transistors. SID Symp. Dig. Tech. Pap. 46, 375–377 (2015).

    Article  CAS  Google Scholar 

  15. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  CAS  Google Scholar 

  16. Liu, C. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020).

    Article  CAS  Google Scholar 

  17. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  Google Scholar 

  18. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    Article  CAS  Google Scholar 

  19. Yu, Z. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).

    Article  CAS  Google Scholar 

  20. Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article  CAS  Google Scholar 

  21. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article  CAS  Google Scholar 

  22. Wang, Q. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 20, 7193–7199 (2020).

    Article  CAS  Google Scholar 

  23. Kang, Kibum et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  Google Scholar 

  24. Tang, H. W. et al. Recent progress in devices and circuits based on wafer-scale transition metal dichalcogenides. Sci. China Inf. Sci. 62, 220401 (2019).

    Article  Google Scholar 

  25. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11, 366–371 (2017).

    Article  CAS  Google Scholar 

  26. Choi, M. et al. Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane. Sci. Adv. 6, eabb5898 (2020).

    Article  CAS  Google Scholar 

  27. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  CAS  Google Scholar 

  28. Yu, J. et al. Van der Waals epitaxy of III‐nitride semiconductors based on 2D materials for flexible applications. Adv. Mater. 32, 1903407 (2020).

    Article  CAS  Google Scholar 

  29. Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    Article  CAS  Google Scholar 

  30. Zhuang, Z. et al. High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes. Adv. Funct. Mater. 26, 36–43 (2016).

    Article  CAS  Google Scholar 

  31. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-00963-8 (2021).

  32. Pirkle, A. et al. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99, 122108 (2011).

    Article  Google Scholar 

  33. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2016).

    Article  Google Scholar 

  34. Huang, Y. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020).

    Article  CAS  Google Scholar 

  35. Struthers, J. D. Solubility and diffusivity of gold, iron, and copper in silicon. J. Appl. Phys. 27, 1560 (1956).

    Article  CAS  Google Scholar 

  36. Day, Jacob et al. III-Nitride full-scale high-resolution microdisplays. Appl. Phys. Lett. 99, 031116 (2011).

    Article  Google Scholar 

  37. Smets, Q. et al. Sources of variability in scaled MoS2 FETs. In Proc. 2020 IEEE International Electron Devices Meeting (IEDM) 3.1.1–3.1.4 (IEEE, 2020).

  38. Smithe, K. K. H., Suryavanshi, S. V., Muñoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 11, 8456–8463 (2017).

    Article  CAS  Google Scholar 

  39. Huo, N. et al. High carrier mobility in monolayer CVD-grown MoS2 through phonon suppression. Nanoscale 10, 15071–15077 (2018).

    Article  CAS  Google Scholar 

  40. Yu, L. et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett. 16, 6349–6356 (2016).

    Article  CAS  Google Scholar 

  41. Polyushkin, D. et al. Analogue two-dimensional semiconductor electronics. Nat. Electron. 3, 486–491 (2020).

    Article  CAS  Google Scholar 

  42. Sebastian, A. et al. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021).

    Article  CAS  Google Scholar 

  43. Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    Article  CAS  Google Scholar 

  44. Wager, J. F. TFT technology: advancements and opportunities for improvement. Info Disp. 36, 9–13 (2020).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Leading-edge Technology Programme of Jiangsu Natural Science Foundation (grant no. BK20202005); the National Natural Science Foundation of China (grant nos. 61927808, 61521001, 61734003, 61861166001, 61851401, 51861145202, 62004104, 61974062, 61921005, 91964202); the Strategic Priority Research Programme of Chinese Academy of Sciences (grant no. XDB30000000); the National Key Research and Development Programme of China (grant no. 2016YFB0404101); the Natural Science Foundation of Jiangsu Province (grant no. BK20202005); the Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Research Funds from NJU-Yangzhou Institute of Opto-electronics and the Fundamental Research Funds for the Central Universities, China.

Author information

Authors and Affiliations

Authors

Contributions

X.W. conceived the research and supervised the project with B.L., R.Z. and Y.S. W.M, F.X., Z.Y., T.T. developed the MoS2 TFT fabrication and monolithic integration process, fabricated micro-LED structures, conducted electrical measurements and demonstrated AM displays. L.S., W.L., H.N. and N.D. contributed to MoS2 TFT fabrication. L.L. and T.L. performed MoS2 CVD growth and characterizations. F.X., K.W. and J.W. performed LED brightness measurements. L.H. and L.S. performed TEM and data analysis. F.Q., X.T. and D.P. contributed to micro-LED fabrication. S.H. designed peripheral circuits and programs. D.L, Y.Z and Y.L. contributed to data analysis. W.M., Z.Y., B.L. and X.W. co-wrote the manuscript with input from other authors. All authors contributed to discussions.

Corresponding authors

Correspondence to Bin Liu, Rong Zhang, Yi Shi or Xinran Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Deji Akinwande and Deep Jariwala for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1, Figs. 1–14 and Tables 1 and 2.

Supplementary Video 1

Scanning the QR code by smart phone to get the word ‘MoS2 LED NJU’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, W., Xu, F., Yu, Z. et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021). https://doi.org/10.1038/s41565-021-00966-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00966-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing