Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology

Abstract

The scale-up of quantum hardware is fundamental to realize the full potential of quantum technology. Among a plethora of hardware platforms, photonics stands out: it provides a modular approach where the main challenges lie in the construction of high-quality building blocks and in the development of methods to interface the modules. The subsequent scale-up could exploit mature integrated photonics foundry technology to produce small-footprint quantum processors of immense complexity. Solid-state quantum emitters can realize a deterministic photon–emitter interface and enable key quantum photonic resources and functionalities, including on-demand single- and multi-photon-entanglement sources, as well as photon–photon nonlinear quantum gates. In this Review, we use the example of quantum dot devices to present the physics of deterministic photon–emitter interfaces, including the main photonic building blocks required to scale up, and discuss quantitative performance benchmarks. While our focus is on quantum dot devices, the presented methods also apply to other quantum-emitter platforms such as atoms, vacancy centres, molecules and superconducting qubits. We also identify applications within quantum communication and computing, presenting a route towards photonics with a genuine quantum advantage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scalable and modular quantum photonic technology based on deterministic single-photon quantum hardware.
Fig. 2: Deterministic photon–emitter interface with QD in a planar nanophotonic waveguide.
Fig. 3: Illustration of basic functionalities required to construct a general-purpose quantum processor based on deterministic photon–emitter interfaces.
Fig. 4: Multi-photon and entangled photon generation.
Fig. 5: Applications of deterministic photon–emitter interfaces in quantum communication and quantum computing.

Similar content being viewed by others

References

  1. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    Article  CAS  Google Scholar 

  2. Blais, A., Grimsmo, A. L., Girvin, S. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    Article  CAS  Google Scholar 

  3. Senellart, P., Solomon, G. & White, A. G. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  CAS  Google Scholar 

  4. Wang, H. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photon. 13, 770–775 (2019).

    Article  CAS  Google Scholar 

  5. Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. 6, eabc8268 (2020). Scalable implementation of single-photon sources, providing a route to realizing quantum advantage.

    Article  Google Scholar 

  6. Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article  CAS  Google Scholar 

  7. Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2, 030901 (2017).

    Article  Google Scholar 

  8. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015).

    Article  CAS  Google Scholar 

  9. Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013).

    Article  CAS  Google Scholar 

  10. Kuhlmann, A. V. et al. Transform-limited single photons from a single quantum dot. Nat. Commun. 6, 8204 (2015). Demonstration of transform-limited photon emission with a quantum dot source.

    Article  Google Scholar 

  11. Pedersen, F. T. et al. Near transform-limited quantum dot linewidths in a broadband photonic crystal waveguide. ACS Photon. 7, 2343–2349 (2020).

    Article  CAS  Google Scholar 

  12. Dreeßen, C. L. et al. Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides. Quantum Sci. Technol. 4, 015003 (2018).

    Article  Google Scholar 

  13. Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  CAS  Google Scholar 

  14. Huthmacher, L. et al. Coherence of a dynamically decoupled quantum-dot hole spin. Phys. Rev. B 97, 241413 (2018).

    Article  CAS  Google Scholar 

  15. Stockill, R. et al. Quantum dot spin coherence governed by a strained nuclear environment. Nat. Commun. 7, 12745 (2016).

    Article  CAS  Google Scholar 

  16. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513 (2000).

    Article  CAS  Google Scholar 

  17. Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).

    Article  CAS  Google Scholar 

  18. Greilich, A., Carter, S. G., Kim, D., Bracker, A. S. & Gammon, D. Optical control of one and two hole spins in interacting quantum dots. Nat. Photon. 5, 702–708 (2011).

    Article  CAS  Google Scholar 

  19. Grim, J. Q. et al. Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18, 963–969 (2019).

    Article  CAS  Google Scholar 

  20. Krizek, F. et al. Field effect enhancement in buffered quantum nanowire networks. Phys. Rev. Mater. 2, 093401 (2018).

    Article  CAS  Google Scholar 

  21. Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    Article  CAS  Google Scholar 

  22. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  CAS  Google Scholar 

  23. Shaikh, F. K., Zeadally, S. & Exposito, E. Enabling technologies for green internet of things. IEEE Syst. J. 11, 983–994 (2015).

    Article  Google Scholar 

  24. Morley, J., Widdicks, K. & Hazas, M. Digitalisation, energy and data demand: the impact of internet traffic on overall and peak electricity consumption. Energy Res. Soc. Sci. 38, 128–137 (2018).

    Article  Google Scholar 

  25. Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).

    Article  CAS  Google Scholar 

  26. Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    Article  CAS  Google Scholar 

  27. Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Optica 7, 291–308 (2020).

    Article  CAS  Google Scholar 

  28. Antón, C. et al. Interfacing scalable photonic platforms: solid-state based multi-photon interference in a reconfigurable glass chip. Optica 6, 1471–1477 (2019).

    Article  Google Scholar 

  29. Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).

    Article  CAS  Google Scholar 

  30. Zanin, G. L. et al. Fiber-compatible photonic feed-forward with 99% fidelity. Opt. Express 29, 3425–3437 (2021).

    Article  Google Scholar 

  31. Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    Article  CAS  Google Scholar 

  32. Cohen, J. D., Meenehan, S. M. & Painter, O. Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction. Opt. Express 21, 11227–11236 (2013).

    Article  Google Scholar 

  33. Ding, Y., Peucheret, C., Ou, H. & Yvind, K. Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency. Opt. Lett. 39, 5348–5350 (2014).

    Article  Google Scholar 

  34. Tiecke, T. G. et al. Efficient fiber-optical interface for nanophotonic devices. Optica 2, 70–75 (2015).

    Article  CAS  Google Scholar 

  35. Lenzini, F. et al. Active demultiplexing of single photons from a solid-state source. Laser Photon. Rev. 11, 1600297 (2017).

    Article  Google Scholar 

  36. Papon, C. et al. Nanomechanical single-photon routing. Optica 6, 524–530 (2019). Demonstration of single-photon routing with ultra-low-loss nanomechanical transducer.

    Article  CAS  Google Scholar 

  37. Bauters, J. F. et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 19, 24090–24101 (2011).

    Article  CAS  Google Scholar 

  38. Li, G. et al. Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects. Opt. Express 20, 12035–12039 (2012).

    Article  Google Scholar 

  39. Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

    Article  CAS  Google Scholar 

  40. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article  CAS  Google Scholar 

  41. He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

    Article  CAS  Google Scholar 

  42. Midolo, L., Schliesser, A. & Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018).

    Article  CAS  Google Scholar 

  43. Haffner, C. et al. Nano-opto-electro-mechanical switches operated at CMOS-level voltages. Science 366, 860–864 (2019).

    Article  CAS  Google Scholar 

  44. Seok, T. J., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. Wafer-scale silicon photonic switches beyond die size limit. Optica 6, 490–494 (2019).

    Article  CAS  Google Scholar 

  45. Elshaari, A. W. et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nat. Commun. 8, 379 (2017).

    Article  Google Scholar 

  46. Elshaari, A. W. et al. Strain-tunable quantum integrated photonics. Nano Lett. 18, 7969–7976 (2018).

    Article  CAS  Google Scholar 

  47. Zhou, X. et al. On-chip nanomechanical filtering of quantum-dot single-photon sources. Laser Photon. Rev. 14, 1900404 (2019).

    Article  Google Scholar 

  48. Li, H. et al. Multispectral superconducting nanowire single photon detector. Opt. Express 27, 4727–4733 (2019).

    Article  CAS  Google Scholar 

  49. Lee, H., Chen, T., Li, J., Painter, O. & Vahala, K. J. Ultra-low-loss optical delay line on a silicon chip. Nat. Commun. 3, 867 (2012).

    Article  Google Scholar 

  50. Weber, J. H. et al. Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Nat. Nanotechnol. 14, 23–26 (2019).

    Article  CAS  Google Scholar 

  51. Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).

    Article  CAS  Google Scholar 

  52. Chang, L. et al. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion. Laser Photon. Rev. 12, 1800149 (2018).

    Article  Google Scholar 

  53. Singh, A. et al. Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip. Optica 6, 563–569 (2019).

    Article  CAS  Google Scholar 

  54. You, L. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics 9, 2673 – 2692 (2020).

    Article  Google Scholar 

  55. Reddy, D. V., Nerem, R. R., Nam, S. W., Mirin, R. P. & Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica 7, 1649–1653 (2020).

    Article  Google Scholar 

  56. Zhang, W. et al. A 16-pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz. IEEE Trans. Appl. Supercond. 29, 2200204 (2019).

    Article  CAS  Google Scholar 

  57. Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013).

    Article  CAS  Google Scholar 

  58. Korzh, B. et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photon. 14, 250–255 (2020).

    Article  CAS  Google Scholar 

  59. Zhu, D. et al. A scalable multi-photon coincidence detector based on superconducting nanowires. Nat. Nanotechnol. 13, 596–601 (2018).

    Article  CAS  Google Scholar 

  60. Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017).

    Article  CAS  Google Scholar 

  61. Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015). Realization of programmable universal photonic-integrated circuit for quantum photonics.

    Article  CAS  Google Scholar 

  62. Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    Article  CAS  Google Scholar 

  63. Gimeno-Segovia, M., Shadbolt, P., Browne, D. E. & Rudolph, T. From three-photon Greenberger-Horne-Zeilinger states to ballistic universal quantum computation. Phys. Rev. Lett. 115, 020502 (2015). Proposal of architecture for realising universal photonic cluster state with single-photon sources.

    Article  Google Scholar 

  64. Zhang, Q. et al. Demonstration of a scheme for the generation of ‘event-ready’ entangled photon pairs from a single-photon source. Phys. Rev. A 77, 062316 (2008).

    Article  Google Scholar 

  65. Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    Article  Google Scholar 

  66. Barz, S., Cronenberg, G., Zeilinger, A. & Walther, P. Heralded generation of entangled photon pairs. Nat. Photon. 4, 553–556 (2010).

    Article  CAS  Google Scholar 

  67. Li, J.-P. et al. Heralded nondestructive quantum entangling gate with single-photon sources. Phys. Rev. Lett. 126, 140501 (2021).

    Article  CAS  Google Scholar 

  68. Salter, C. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).

    Article  CAS  Google Scholar 

  69. Basset, F. B. et al. Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv. 7, eabe6379 (2021).

    Article  CAS  Google Scholar 

  70. Prilmüller, M. et al. Hyperentanglement of photons emitted by a quantum dot. Phys. Rev. Lett. 121, 110503 (2018).

    Article  Google Scholar 

  71. Sheng, Y.-B. & Deng, F.-G. Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010).

    Article  Google Scholar 

  72. Gershoni, D. A quantum knitting machine generating on demand cluster states of entangled photons. In Conference on Lasers and Electro-Optics (CLEO) FTu3H–3 (Optical Society of America, 2018).

  73. Gao, W., Fallahi, P., Togan, E., Miguel-Sánchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    Article  CAS  Google Scholar 

  74. Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016). Demonstration of multi-photon entanglement with a quantum dot source.

    Article  CAS  Google Scholar 

  75. Tiurev, K. et al. High-fidelity multi-photon-entangled cluster state with solid-state quantum emitters in photonic nanostructures. Preprint at https://arxiv.org/abs/2007.09295 (2020).

  76. Briegel, H. J., Browne, D. E., Dür, W., Raussendorf, R. & Van den Nest, M. Measurement-based quantum computation. Nat. Phys. 5, 19–26 (2009).

    Article  CAS  Google Scholar 

  77. Economou, S. E., Lindner, N. & Rudolph, T. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett. 105, 093601 (2010).

    Article  Google Scholar 

  78. Pichler, H., Choi, S., Zoller, P. & Lukin, M. D. Universal photonic quantum computation via time-delayed feedback. Proc. Natl Acad. Sci. USA 114, 11362–11367 (2017).

    Article  CAS  Google Scholar 

  79. Mahmoodian, S., Lodahl, P. & Sørensen, A. S. Quantum networks with chiral-light–matter interaction in waveguides. Phys. Rev. Lett. 117, 240501 (2016).

    Article  Google Scholar 

  80. Le Jeannic, H. et al. Experimental reconstruction of the few-photon nonlinear scattering matrix from a single quantum dot in a nanophotonic waveguide. Phys. Rev. Lett. 126, 023603 (2021).

    Article  Google Scholar 

  81. Javadi, A. et al. Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide. Nat. Nanotechnol. 13, 398–403 (2018).

    Article  CAS  Google Scholar 

  82. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007).

    Article  CAS  Google Scholar 

  83. Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    Article  Google Scholar 

  84. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  Google Scholar 

  85. Acín, A. et al. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007).

    Article  Google Scholar 

  86. Kołodyński, J. et al. Device-independent quantum key distribution with single-photon sources. Quantum 4, 260 (2020).

    Article  Google Scholar 

  87. Herrero-Collantes, M. & Garcia-Escartin, J. C. Quantum random number generators. Rev. Mod. Phys. 89, 015004 (2017).

    Article  Google Scholar 

  88. Liu, Y. et al. Device-independent quantum random-number generation. Nature 562, 548–551 (2018).

    Article  CAS  Google Scholar 

  89. Sangouard, N., Simon, C., De Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011).

    Article  Google Scholar 

  90. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  CAS  Google Scholar 

  91. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  Google Scholar 

  92. Heshami, K. et al. Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005–2028 (2016).

    Article  Google Scholar 

  93. Fowler, A. G. et al. Surface code quantum communication. Phys. Rev. Lett. 104, 180503 (2010).

    Article  Google Scholar 

  94. Buterakos, D., Barnes, E. & Economou, S. E. Deterministic generation of all-photonic quantum repeaters from solid-state emitters. Phys. Rev. X 7, 041023 (2017).

    Google Scholar 

  95. Borregaard, J. et al. One-way quantum repeater based on near-deterministic photon-emitter interfaces. Phys. Rev. X 10, 021071 (2020). Proposal of a one-way quantum repeater based on deterministic photon-emitter interfaces.

    CAS  Google Scholar 

  96. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  CAS  Google Scholar 

  97. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article  Google Scholar 

  98. Sparrow, C. et al. Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557, 660–667 (2018). Proof-of-concept quantum simulation of vibrational dynamics with single photons.

    Article  CAS  Google Scholar 

  99. Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019).

    Article  CAS  Google Scholar 

  100. Henriksen, N. E. & Hansen, F. Y. Theories of Molecular Reaction Dynamics: The Microscopic Foundation of Chemical Kinetics (Oxford Univ. Press, 2018).

  101. Cao, Y., Romero, J. & Aspuru-Guzik, A. Potential of quantum computing for drug discovery. IBM J. Res. Dev. 62, 6:1–6:20 (2018).

    Article  Google Scholar 

  102. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article  CAS  Google Scholar 

  103. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    Article  CAS  Google Scholar 

  104. Steinbrecher, G. R., Olson, J. P., Englund, D. & Carolan, J. Quantum optical neural networks. npj Quantum Inf. 5, 60 (2019).

    Article  Google Scholar 

  105. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001).

    Article  CAS  Google Scholar 

  106. Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005). Proof-of-concept demonstration of one-way quantum computing.

    Article  CAS  Google Scholar 

  107. Witthaut, D., Lukin, M. D. & Sørensen, A. S. Photon sorters and qnd detectors using single photon emitters. Europhys. Lett. 97, 50007 (2012).

    Article  Google Scholar 

  108. Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).

    Article  CAS  Google Scholar 

  109. Akopian, N., Wang, L., Rastelli, A., Schmidt, O. & Zwiller, V. Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot. Nat. Photon. 5, 230–233 (2011).

    Article  CAS  Google Scholar 

  110. Meyer, H. M. et al. Direct photonic coupling of a semiconductor quantum dot and a trapped ion. Phys. Rev. Lett. 114, 123001 (2015).

    Article  CAS  Google Scholar 

  111. Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution. Nat. Nanotechnol. 12, 776–783 (2017).

    Article  CAS  Google Scholar 

  112. Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).

    Article  CAS  Google Scholar 

  113. Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article  CAS  Google Scholar 

  114. Elfving, V. E., Das, S. & Sørensen, A. S. Enhancing quantum transduction via long-range waveguide-mediated interactions between quantum emitters. Phys. Rev. A 100, 053843 (2019).

    Article  CAS  Google Scholar 

  115. Hummel, T. et al. Efficient demultiplexed single-photon source with a quantum dot coupled to a nanophotonic waveguide. Appl. Phys. Lett. 115, 021102 (2019).

    Article  Google Scholar 

  116. Palacios-Berraquero, C., Mueck, L. & Persaud, D. M. Instead of ‘supremacy’ use ‘quantum advantage’. Nature 576, 213 (2019).

    Article  CAS  Google Scholar 

  117. Preskill, J. Quantum entanglement and quantum computing. In Proc. 25th Solvay Conference on Physics (ed. Gross, D., Henneaux, M. & Sevrin, A.) 63–80 (World Scientific, 2013).

  118. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  CAS  Google Scholar 

  119. Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proc. 43rd Annual ACM Symposium on Theory of Computing 333–342 (ACM, 2011).

  120. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020). Photonic boson sampling experiment demonstrating quantum advantage with squeezed light sources.

    Article  CAS  Google Scholar 

  121. Shchesnovich, V. S. Tight bound on the trace distance between a realistic device with partially indistinguishable bosons and the ideal boson sampling. Phys. Rev. A 91, 063842 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Paesani for constructive comments on the manuscript. We gratefully acknowledge financial support from Danmarks Grundforskningsfond (DNRF 139, Hy-Q Center for Hybrid Quantum Networks).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lodahl.

Ethics declarations

Competing interests

P.L. is founder of the start-up company Sparrow Quantum.

Additional information

Peer review information Nature Nanotechnology thanks Xinlun Cai, Roberto Osellame and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uppu, R., Midolo, L., Zhou, X. et al. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology. Nat. Nanotechnol. 16, 1308–1317 (2021). https://doi.org/10.1038/s41565-021-00965-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00965-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing