Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire


Two-dimensional (2D) semiconductors, in particular transition metal dichalcogenides (TMDCs), have attracted great interest in extending Moore’s law beyond silicon1,2,3. However, despite extensive efforts4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25, the growth of wafer-scale TMDC single crystals on scalable and industry-compatible substrates has not been well demonstrated. Here we demonstrate the epitaxial growth of 2 inch (~50 mm) monolayer molybdenum disulfide (MoS2) single crystals on a C-plane sapphire. We designed the miscut orientation towards the A axis (C/A) of sapphire, which is perpendicular to the standard substrates. Although the change of miscut orientation does not affect the epitaxial relationship, the resulting step edges break the degeneracy of nucleation energy for the antiparallel MoS2 domains and lead to more than a 99% unidirectional alignment. A set of microscopies, spectroscopies and electrical measurements consistently showed that the MoS2 is single crystalline and has an excellent wafer-scale uniformity. We fabricated field-effect transistors and obtained a mobility of 102.6 cm2 V−1 s−1 and a saturation current of 450 μA μm–1, which are among the highest for monolayer MoS2. A statistical analysis of 160 field-effect transistors over a centimetre scale showed a >94% device yield and a 15% variation in mobility. We further demonstrated the single-crystalline MoSe2 on C/A sapphire. Our method offers a general and scalable route to produce TMDC single crystals towards future electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sapphire (0001) substrate and epitaxial relationship.
Fig. 2: Unidirectional alignment of MoS2 domains on a C/A sapphire (0001) substrate.
Fig. 3: Mechanism of unidirectional nucleation.
Fig. 4: Wafer-scale MoS2 single crystals.
Fig. 5: FET performance.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  ADS  Google Scholar 

  3. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Liu, K.-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

    Article  PubMed  ADS  Google Scholar 

  7. Liu, Z. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014).

    Article  PubMed  ADS  Google Scholar 

  8. Gao, Y. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 6, 8569 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Chen, J. et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 139, 1073–1076 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Yang, P. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  12. Li, S. et al. Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 17, 535–542 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Fu, D. et al. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 139, 9392–9400 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, X. et al. Defect-controlled nucleation and orientation of WSe2 on hBN: a route to single-crystal epitaxial monolayers. ACS Nano 13, 3341–3352 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Chen, T.-A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111). Nature 579, 219–223 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Dumcenco, D. et al. Large-area epitaxial monolayer MoS2. ACS Nano 9, 4611–4620 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, H. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 11, 12001–12007 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Aljarb, A. et al. Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS Nano 11, 9215–9222 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Suenaga, K. et al. Surface-mediated aligned growth of monolayer MoS2 and in-plane heterostructures with graphene on sapphire. ACS Nano 12, 10032–10044 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, X. et al. Diffusion-controlled epitaxy of large area coalesced WSe2 monolayers on sapphire. Nano Lett. 18, 1049–1056 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Wang, Q. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 20, 7193–7199 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Yang, P. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14, 5036–5045 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Choi, S. H. Epitaxial single-crystal growth of transition metal dichalcogenide monolayers via the atomic sawtooth au surface. Adv. Mater. 33, 2006601 (2021).

    Article  CAS  Google Scholar 

  26. Nakamura, S. & Krames, M. R. History of gallium–nitride-based light-emitting diodes for illumination. Proc. IEEE 101, 2211–2220 (2013).

    Article  CAS  Google Scholar 

  27. Lytvynov, L., Single Crystals of Electronic Materials (ed. Fornari, R.) 447–485 (Woodhead Publishing, 2019).

  28. Doucette, L. D., Cunha, M. P. D. & Lad, R. J. Precise orientation of single crystals by a simple X-ray diffraction rocking curve method. Rev. Sci. Instrum. 76, 036106 (2005).

    Article  ADS  Google Scholar 

  29. Hwang, Y. & Shin, N. Hydrogen-assisted step-edge nucleation of MoSe2 monolayers on sapphire substrates. Nanoscale 11, 7701–7709 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Chubarov, M. Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 15, 2532–2541 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Yin, X. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Cheng, J. et al. Kinetic nature of grain boundary formation in as-grown MoS2 monolayers. Adv. Mater. 27, 4069–4074 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Bets, K. V., Gupta, N. & Yakobson, B. I. How the complementarity at vicinal steps enables growth of 2D monocrystals. Nano Lett. 19, 2027–2031 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Dong, J., Zhang, L., Dai, X. & Ding, F. The epitaxy of 2D materials growth. Nat. Commun. 11, 5862 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Schweiger, H., Raybaud, P., Kresse, G. & Toulhoat, H. Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: a theoretical study. J. Catal. 207, 76–87 (2002).

    Article  CAS  Google Scholar 

  38. Aljarb, A. et al. Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat. Mater. 19, 1300–1306 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Li, M.-Y., Su, S.-K., Wong, H.-S. P. & Li, L.-J. How 2D semiconductors could extend Moore’s law. Nature 567, 169–170 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Tang, H. et al. Recent progress in devices and circuits based on wafer-scale transition metal dichalcogenides. Sci. China Inf. Sci. 62, 220401 (2019).

    Article  Google Scholar 

  41. Smithe, K. K. H., Suryavanshi, S. V., Muñoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 11, 8456–8463 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Smets, Q. et al. Ultra-scaled MOCVD MoS2 MOSFETs with 42 nm contact pitch and 250 µA/µm drain current. In Proc. 2019 IEEE International Electron Devices Meeting (IEDM) 23.2.1–23.2.4 (IEEE, 2019).

  43. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  ADS  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  46. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  ADS  Google Scholar 

  47. Ma, L. & Zeng, X. C. Catalytic directional cutting of hexagonal boron nitride: the roles of interface and etching agents. Nano Lett. 17, 3208–3214 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Zhao, W. & Ding, F. Energetics and kinetics of phase transition between a 2H and a 1T MoS2 monolayer—a theoretical study. Nanoscale 9, 2301–2309 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references


This work is supported by the Natural Science Foundation of Jiangsu Province (grant no. BK20202005), the National Key R&D Program of China (grant no. 2017YFA0204800), National Natural Science Foundation of China (grant nos 61927808, 61521001, 61734003, 61851401, 91964202, 61861166001, 51861145202; 51972162, 22033002, 21525311, 21903014, 11774153 and 11874199), Strategic Priority Research Program of the Chinese Academy of Sciences XDB 30000000, Key Laboratory of Advanced Photonic and Electronic Materials, Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics and the Fundamental Research Funds for the Central Universities, China.

Author information

Authors and Affiliations



X.W. conceived and supervised the project. T.L. performed the CVD growth with assistance from L.L., Z.W., Y. Yang, W. Lin and N.D., and guidance from Y. Yao and Y.S. W.G. and Y.N. performed the RHEED, LEED and XRD characterizations and data analysis. L.M. and J.W. performed the density functional theory calculations. Z.H., S.G. and P.W. performed the TEM and data analysis. X.C. and Z.L. contributed to the spectral characterizations, including PL, Raman spectroscopy and SHG mapping. Z.Y., W. Li, D.F., X.T. and D.P. contributed to transistor fabrication, measurements and data analysis. T.L., J.W. and X.W. co-wrote the manuscript with input from other authors. All the authors contributed to discussions.

Corresponding authors

Correspondence to Jinlan Wang or Xinran Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Xiangfeng Duan, Joan Redwing and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Table 1 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Guo, W., Ma, L. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing