Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Voltage control of ferrimagnetic order and voltage-assisted writing of ferrimagnetic spin textures

Abstract

Voltage control of magnetic order is desirable for spintronic device applications, but 180° magnetization switching is not straightforward because electric fields do not break time-reversal symmetry. Ferrimagnets are promising candidates for 180° switching owing to a multi-sublattice configuration with opposing magnetic moments of different magnitudes. In this study we used solid-state hydrogen gating to control the ferrimagnetic order in rare earth–transition metal thin films dynamically. Electric field-induced hydrogen loading/unloading in GdCo can shift the magnetic compensation temperature by more than 100 K, which enables control of the dominant magnetic sublattice. X-ray magnetic circular dichroism measurements and ab initio calculations indicate that the magnetization control originates from the weakening of antiferromagnetic exchange coupling that reduces the magnetization of Gd more than that of Co upon hydrogenation. We observed reversible, gate voltage-induced net magnetization switching and full 180° Néel vector reversal in the absence of external magnetic fields. Furthermore, we generated ferrimagnetic spin textures, such as chiral domain walls and skyrmions, in racetrack devices through hydrogen gating. With gating times as short as 50 μs and endurance of more than 10,000 cycles, our method provides a powerful means to tune ferrimagnetic spin textures and dynamics, with broad applicability in the rapidly emerging field of ferrimagnetic spintronics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Dominant sublattice toggling and compensation temperature gating of GdCo.
Fig. 2: XMCD and MFA modelling of the effect of hydrogen gating on GdCo.
Fig. 3: Ab initio calculations of the effect of hydrogen loading.
Fig. 4: Reversibility and speed of dominant sublattice gating characterized by electrical measurements.
Fig. 5: Deterministic 180° voltage-controlled reversal of net magnetization and Néel vector in the absence of an external field.
Fig. 6: Reversed domain and skyrmion generation based on voltage gating of GdCo.

Data availability

Source data are provided with this paper. The XMCD spectra that support the findings of this study are publicly available at https://doi.org/10.5281/zenodo.4831735.

References

  1. 1.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    Tsymbal, E. Y. Electric toggling of magnets. Nat. Mater. 11, 12–13 (2011).

    Article  CAS  Google Scholar 

  4. 4.

    Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Valencia, S. et al. Interface-induced room-temperature multiferroicity in BaTiO3. Nat. Mater. 10, 753–758 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    Baek, S. H. et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309–314 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Cherifi, R. O. et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345–351 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    Mahmood, A. et al. Voltage controlled Néel vector rotation in zero magnetic field. Nat. Commun. 12, 1674 (2021).

    CAS  Article  Google Scholar 

  14. 14.

    Caretta, L. et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13, 1154–1160 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Kim, K. J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1192 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Cai, K. et al. Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets. Nat. Electron. 3, 37–42 (2020).

    CAS  Article  Google Scholar 

  17. 17.

    Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–209 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Ueda, K., Mann, M., de Brouwer, P. W. P., Bono, D. & Beach, G. S. D. Temperature dependence of spin-orbit torques across the magnetic compensation point in a ferrimagnetic TbCo alloy film. Phys. Rev. B 96, 064410 (2017).

    Article  Google Scholar 

  19. 19.

    Katayama, T., Hasegawa, K., Kawanishi, K. & Tsushima, T. Annealing effects on magnetic properties of amorphous GdCo, GdFe, and GdCoMo films. J. Appl. Phys. 49, 1759–1761 (1978).

    CAS  Article  Google Scholar 

  20. 20.

    Ueda, K., Tan, A. J. & Beach, G. S. D. Effect of annealing on magnetic properties in ferrimagnetic GdCo alloy films with bulk perpendicular magnetic anisotropy. AIP Adv. 8, 125204 (2018).

    Article  CAS  Google Scholar 

  21. 21.

    Chaudhari, P., Cuomo, J. J. & Gambino, R. J. Amorphous metallic films for magneto‐optic applications. Appl. Phys. Lett. 22, 337–339 (1973).

    CAS  Article  Google Scholar 

  22. 22.

    Schelleng, J. H., Forester, D. W., Lubitz, P. & Vittoria, C. Hydrogenation and magnetic properties of amorphous rare-earth-iron (R-Fe) alloys. J. Appl. Phys. 55, 1805–1807 (1984).

    CAS  Article  Google Scholar 

  23. 23.

    Pourarian, F. Review on the influence of hydrogen on the magnetism of alloys based on rare earth-transition metal systems. Physica B 321, 18–28 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    Kimel, A. V. & Li, M. Writing magnetic memory with ultrashort light pulses. Nat. Rev. Mater. 4, 189–200 (2019).

    Article  Google Scholar 

  26. 26.

    Tan, A. J. et al. Magneto-ionic control of magnetism using a solid-state proton pump. Nat. Mater. 18, 35–41 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Mushnikov, N. V., Goto, T., Gaviko, V. S. & Zajkov, N. K. Magnetic properties of crystalline and amorphous GdCo2Hx hydrides. J. Alloys Compd. 292, 51–56 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    Knapton, A. G. Palladium alloys for hydrogen diffusion membranes. Platin. Met. Rev. 21, 44–50 (1977).

    CAS  Google Scholar 

  29. 29.

    Tan, A. J. et al. Hydration of gadolinium oxide (GdOx) and its effect on voltage-induced Co oxidation in a Pt/Co/GdOx/Au heterostructure. Phys. Rev. Mater. 3, 064408 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Huang, M. et al. Voltage-gated optics and plasmonics enabled by solid-state proton pumping. Nat. Commun. 10, 5030 (2019).

    Article  CAS  Google Scholar 

  31. 31.

    Hansen, P. & Heitmann, H. Media for erasable magnetooptic recording. IEEE Trans. Magn. 25, 4390–4404 (1989).

    CAS  Article  Google Scholar 

  32. 32.

    Tsuchida, T., Sugaki, S. & Nakamura, Y. Magnetic properties of GdCo2 and Gd1–xYxCo2. J. Phys. Soc. Japan 39, 340–343 (1975).

    CAS  Article  Google Scholar 

  33. 33.

    Lemaire, R. & Schweizer, J. Variation du moment magnetique du cobalt dans les composes GduY1−uCo2. Phys. Lett. 21, 366–368 (1966).

    CAS  Article  Google Scholar 

  34. 34.

    McGuire, T. R. & Gambino, R. J. Hall effect in amorphous Gd alloy films. J. Magn. Magn. Mater. 15–18, 1401–1403 (1980).

    Article  Google Scholar 

  35. 35.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  36. 36.

    Finley, J. & Liu, L. Spin-orbit-torque efficiency in compensated ferrimagnetic cobalt-terbium alloys. Phys. Rev. Appl. 6, 054001 (2016).

    Article  CAS  Google Scholar 

  37. 37.

    Niemier, M. T. et al. Nanomagnet logic: progress toward system-level integration. J. Phys. Condens. Matter 23, 493202 (2011).

    CAS  Article  Google Scholar 

  38. 38.

    Breitkreutz, S. et al. Controlled reversal of Co/Pt dots for nanomagnetic logic applications. J. Appl. Phys. 111, 07A715 (2012).

    Article  CAS  Google Scholar 

  39. 39.

    Haldar, A., Kumar, D. & Adeyeye, A. O. A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device. Nat. Nanotechnol. 11, 437–443 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    Choudhury, S. et al. Voltage controlled on-demand magnonic nanochannels. Sci. Adv. 6, eaba5457 (2020).

    CAS  Article  Google Scholar 

  41. 41.

    Rapoport, E., Montana, D. & Beach, G. S. D. Integrated capture, transport, and magneto-mechanical resonant sensing of superparamagnetic microbeads using magnetic domain walls. Lab Chip 12, 4433–4440 (2012).

    CAS  Article  Google Scholar 

  42. 42.

    Chen, C. et al. Voltage manipulation of magnetic particles using multiferroics. J. Phys. D 53, 174002 (2020).

    Article  CAS  Google Scholar 

  43. 43.

    Zhang, D. et al. Enhancement of tunneling magnetoresistance by inserting a diffusion barrier in L10-FePd perpendicular magnetic tunnel junctions. Appl. Phys. Lett. 112, 152401 (2018).

    Article  CAS  Google Scholar 

  44. 44.

    Zhang, D. et al. L10 Fe-Pd synthetic antiferromagnet through an fcc Ru spacer utilized for perpendicular magnetic tunnel junctions. Phys. Rev. Appl. 9, 044028 (2018).

    CAS  Article  Google Scholar 

  45. 45.

    Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    Zhao, Z., Smith, A. K., Jamali, M. & Wang, J. External‐field‐free spin Hall switching of perpendicular magnetic nanopillar with a dipole‐coupled composite structure. Adv. Electron. Mater. 6, 1901368 (2020).

    CAS  Article  Google Scholar 

  47. 47.

    Streubel, R. et al. Experimental evidence of chiral ferrimagnetism in amorphous GdCo films. Adv. Mater. 30, 1800199 (2018).

    Article  CAS  Google Scholar 

  48. 48.

    Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    CAS  Article  Google Scholar 

  49. 49.

    Fukami, S. & Ohno, H. Perspective: spintronic synapse for artificial neural network. J. Appl. Phys. 124, 151904 (2018).

    Article  CAS  Google Scholar 

  50. 50.

    Huang, M. Voltage Control of Electrical, Optical and Magnetic Properties of Materials by Solid State Ionic Transport and Electrochemical Reactions. PhD thesis, Massachusetts Institute of Technology (2020).

  51. 51.

    Gilbert, D. A. et al. Controllable positive exchange bias via redox-driven oxygen migration. Nat. Commun. 7, 11050 (2016).

    CAS  Article  Google Scholar 

  52. 52.

    Lee, K.-Y. et al. Fast magneto-ionic switching of interface anisotropy using yttria-stabilized zirconia gate oxide. Nano Lett. 20, 3435–3441 (2020).

    CAS  Article  Google Scholar 

  53. 53.

    Caretta, L. et al. Interfacial Dzyaloshinskii-Moriya interaction arising from rare-earth orbital magnetism in insulating magnetic oxides. Nat. Commun. 11, 1090 (2020).

    CAS  Article  Google Scholar 

  54. 54.

    Barla, A. et al. Design and performance of BOREAS, the beamline for resonant X-ray absorption and scattering experiments at the ALBA synchrotron light source. J. Synchrotron Radiat. 23, 1507–1517 (2016).

    CAS  Article  Google Scholar 

  55. 55.

    Vasili, H. B. et al. Direct observation of multivalent states and 4f→3d charge transfer in Ce-doped yttrium iron garnet thin films. Phys. Rev. B 96, 014433 (2017).

    Article  Google Scholar 

  56. 56.

    Chen, C. T. et al. Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 75, 152–155 (1995).

    CAS  Article  Google Scholar 

  57. 57.

    Teramura, Y., Tanaka, A., Thole, B. T. & Jo, T. Effect of Coulomb interaction on the X-ray magnetic circular dichroism spin sum rule in rare earths. J. Phys. Soc. Japan 65, 3056–3059 (1996).

    CAS  Article  Google Scholar 

  58. 58.

    Ostler, T. A. et al. Crystallographically amorphous ferrimagnetic alloys: comparing a localized atomistic spin model with experiments. Phys. Rev. B 84, 024407 (2011).

    Article  CAS  Google Scholar 

  59. 59.

    White, H. W., Beaudry, B. J., Burgardt, P., Legvold, S. & Harmon, B. N. Magnetic moments of ferromagnetic gadolinium alloys. AIP Conf. Proc. 29, 329 (1976).

    CAS  Article  Google Scholar 

  60. 60.

    Mansuripur, M. & Ruane, M. Mean-field analysis of amorphous rare earth-transition metal alloys for thermomagnetic recording. IEEE Trans. Magn. 22, 33–43 (1986).

    Article  Google Scholar 

  61. 61.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  62. 62.

    Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  CAS  Google Scholar 

  63. 63.

    Dudarev, S. & Botton, G. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Article  Google Scholar 

  64. 64.

    Evans, R. F. L. et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, 103202 (2014).

    CAS  Article  Google Scholar 

  65. 65.

    Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Science Foundation (NSF) through the Massachusetts Institute of Technology Materials Research Science and Engineering Center (MRSEC) under award number DMR-1419807 and through NSF award number ECCS-1808828, by SMART, one of seven centres of nCORE, a Semiconductor Research Corporation program, sponsored by the National Institute of Standards and Technology (NIST), by DARPA ERI FRANC program under HR001117S0056-FP-042, by the DARPA TEE program under HR001117S0038-D18AC0019, by the Korea Institute of Science and Technology (KIST) Institutional Program (2E31032) and a National Research Council of Science and Technology (NST) grant (CAP-16-01-KIST) by the Korea government (MSIP), and by the German Science Foundation (DFG) under project 400178764. This work used the Extreme Science and Engineering Discovery Environment (XSEDE) computational resources provided through allocation TG-DMR190038. The work was performed using the facilities in the MIT Microsystems Technology Laboratory and in the Center for Materials Science and Engineering, supported by the NSF MRSEC program under award number DMR-1419807. Portions of this work were conducted in the Minnesota Nano Center, which is supported by the NSF through the National Nanotechnology Coordinated Infrastructure (NNCI) under award number ECCS-2025124. M.V. and P.G. acknowledge additional funding through grants from MINECO FIS2016-78591-C3-2-R (AEI/FEDER, UE) and FLAG-ERA SographMEM (PCI2019-111908-2). M.H. acknowledges financial support from the Kavanaugh Fellows Program in the Department of Materials Science and Engineering at MIT. L.C. acknowledges financial support from the NSF Graduate Research Fellowship and the GEM Consortium. The authors thank L. Liu for use of ion-milling equipment.

Author information

Affiliations

Authors

Contributions

M.H. and G.S.D.B conceived and designed the experiments. G.S.D.B., J.C., K.L., B.Y. and J.-P.W. supervised the respective members of the study. M.H., M.U.H., D.Z., D.L. and J.Z. fabricated the samples. M.H., M.U.H. and J.Z. performed MOKE and electrical characterizations. S.S., A.C., P.G., M.V. and M.H. conducted the XMCD measurements. M.H. and F.B. processed the XMCD measurements with help from M.V. and P.G. M.H. carried out the mean-field modelling. K.K. performed the ab initio and spin dynamics calculations. M.H. set up the temperature-dependent MOKE apparatus with help from L.C. K.-Y.L. performed the structural and chemical analyses. M.H. wrote the manuscript with guidance from G.S.D.B. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Geoffrey S. D. Beach.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Christian Binek, Morgan Trassin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Discussion.

Supplementary Video 1

Time sequence of the coercivity and hysteresis loop when VG is cycled between +3 and −1.5 V.

Source data

Source Data Fig. 1

Numerical data used to generate the graphs in the figures.

Source Data Fig. 2

Numerical data used to generate the graphs in the figures.

Source Data Fig. 3

Numerical data used to generate the graphs in the figures.

Source Data Fig. 4

Numerical data used to generate the graphs in the figures.

Source Data Fig. 5

Numerical data used to generate the graphs in the figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Hasan, M.U., Klyukin, K. et al. Voltage control of ferrimagnetic order and voltage-assisted writing of ferrimagnetic spin textures. Nat. Nanotechnol. 16, 981–988 (2021). https://doi.org/10.1038/s41565-021-00940-1

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research