Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Van der Waals heterostructures for spintronics and opto-spintronics

Abstract

The large variety of 2D materials and their co-integration in van der Waals heterostructures enable innovative device engineering. In addition, their atomically thin nature promotes the design of artificial materials by proximity effects that originate from short-range interactions. Such a designer approach is particularly compelling for spintronics, which typically harnesses functionalities from thin layers of magnetic and non-magnetic materials and the interfaces between them. Here we provide an overview of recent progress in 2D spintronics and opto-spintronics using van der Waals heterostructures. After an introduction to the forefront of spin transport research, we highlight the unique spin-related phenomena arising from spin–orbit and magnetic proximity effects. We further describe the ability to create multifunctional hybrid heterostructures based on van der Waals materials, combining spin, valley and excitonic degrees of freedom. We end with an outlook on perspectives and challenges for the design and production of ultracompact all-2D spin devices and their potential applications in conventional and quantum technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Spin injection and spin transport.
Fig. 2: Proximity effects.
Fig. 3: CSI in vdW heterostructures.
Fig. 4: Magnetic proximity effects in graphene.
Fig. 5: Magnetic proximity effects in TMDCs.

References

  1. 1.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Google Scholar 

  2. 2.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Roche, S. et al. Graphene spintronics: the European Flagship perspective. 2D Mater. 2, 030202 (2015).

    Article  CAS  Google Scholar 

  5. 5.

    Avsar, A. et al. Colloquium: spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 92, 021003 (2020).

    CAS  Article  Google Scholar 

  6. 6.

    Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    Zutic, I., Matos-Abiague, A., Scharf, B., Dery, H. & Belaschhenko, K. Proximitized materials. Mater. Today 22, 85–107 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Article  Google Scholar 

  11. 11.

    Loong, L. M. et al. Flexible MgO barrier magnetic tunnel junctions. Adv. Mater. 28, 4983–4990 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Serrano, I. G. et al. Two-dimensional flexible high diffusive spin circuits. Nano Lett. 19, 666–673 (2019).

    CAS  Article  Google Scholar 

  13. 13.

    Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  14. 14.

    Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000).

    CAS  Article  Google Scholar 

  15. 15.

    Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    Han, W. et al. Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 105, 167202 (2010).

    Article  CAS  Google Scholar 

  17. 17.

    Neumann, I., Costache, M. V., Bridoux, G., Sierra, J. F. & Valenzuela, S. O. Enhanced spin accumulation at room temperature in graphene spin valves with amorphous carbon interfacial layers. Appl. Phys. Lett. 103, 112401 (2013).

    Article  CAS  Google Scholar 

  18. 18.

    Singh, S. et al. Strontium oxide tunnel barriers for high quality spin transport and large spin accumulation in graphene. Nano Lett. 17, 7578–7585 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Friedman, A. L., van ‘t Erve, O. M. J., Li, C. H., Robinson, J. T. & Jonker, B. T. Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport. Nat. Commun. 5, 3161 (2014).

    Article  CAS  Google Scholar 

  20. 20.

    Kamalakar, M. V., Dankert, A., Bergsten, J., Ive, T. & Dash, S. P. Enhanced tunnel spin injection into graphene using chemical vapor deposited hexagonal boron nitride. Sci. Rep. 4, 6146 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Gurram, M., Omar, S. & van Wees, B. J. Bias induced up to 100% spin-injection and detection polarizations in ferromagnet/bilayer-hBN/graphene/hBN heterostructures. Nat. Commun. 8, 248 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Avsar, A. et al. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes. Nat. Phys. 13, 888–893 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Xu, J. et al. Spin inversion in graphene spin valves by gate-tunable magnetic proximity effect at one-dimensional contacts. Nat. Commun. 9, 2869 (2018).

    Article  CAS  Google Scholar 

  24. 24.

    Yang, L. et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nat. Phys. 11, 830–834 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Dey, P. et al. Gate-controlled spin-valley locking of resident carriers in WS2 monolayers. Phys. Rev. Lett. 119, 137401 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Kim, J. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 3, e1700518 (2017).

    Article  CAS  Google Scholar 

  27. 27.

    Gmitra, M. & Fabian, J. Graphene on transition-metal dichalcogenides: a platform for proximity spin-orbit physics and optospintronics. Phys. Rev. B 92, 155403 (2015).

    Article  CAS  Google Scholar 

  28. 28.

    Luo, Y. K. et al. Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano Lett. 17, 3877–3883 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Avsar, A. et al. Optospintronics in graphene via proximity coupling. ACS Nano 11, 11678–11686 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Drögeler, M. et al. Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices. Nano Lett. 16, 3533–3539 (2016).

    Article  CAS  Google Scholar 

  31. 31.

    Gebeyehu, Z. M. et al. Spin communication over 30-µm long channels of chemical vapor deposited graphene on SiO2. 2D Mater. 6, 034003 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    McCormick, E. J. et al. Imaging spin dynamics in monolayer WS2 by time-resolved Kerr rotation microscopy. 2D Mater. 5, 011010 (2017).

    Article  CAS  Google Scholar 

  33. 33.

    Song, X., Xie, S., Kang, K., Park, J. & Sih, V. Long-lived hole spin/valley polarization probed by Kerr rotation in monolayer WSe2. Nano Lett. 16, 5010–5014 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Ersfeld, M. et al. Spin states protected from intrinsic electron–phonon coupling reaching 100 ns lifetime at room temperature in MoSe2. Nano Lett. 19, 4083–4090 (2019).

    CAS  Article  Google Scholar 

  35. 35.

    Jin, C. et al. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures. Science 360, 893–896 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C. & Fabian, J. Band-structure topologies of graphene: spin-orbit coupling effects from first principles. Phys. Rev. B 80, 235431 (2009).

    Article  CAS  Google Scholar 

  37. 37.

    Sichau, J. et al. Resonance microwave measurements of an intrinsic spin-orbit coupling gap in graphene: a possible indication of a topological state. Phys. Rev. Lett. 122, 046403 (2019).

    CAS  Article  Google Scholar 

  38. 38.

    Kochan, D., Gmitra, M. & Fabian, J. Spin relaxation mechanism in graphene: resonant scattering by magnetic impurities. Phys. Rev. Lett. 112, 116602 (2014).

    Article  CAS  Google Scholar 

  39. 39.

    Kochan, D., Irmer, S., Gmitra, M. & Fabian, J. Resonant scattering by magnetic impurities as a model for spin relaxation in bilayer graphene. Phys. Rev. Lett. 115, 196601 (2015).

    Article  CAS  Google Scholar 

  40. 40.

    Van Tuan, D., Ortmann, F., Soriano, D., Valenzuela, S. O. & Roche, S. Pseudospin-driven spin relaxation mechanism in graphene. Nat. Phys. 10, 857–863 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    Cummings, A. W. & Roche, S. Effects of dephasing on spin lifetime in ballistic spin-orbit materials. Phys. Rev. Lett. 116, 086602 (2016).

    Article  CAS  Google Scholar 

  42. 42.

    Ochoa, H., Castro Neto, A. H. & Guinea, F. Elliot-Yafet mechanism in graphene. Phys. Rev. Lett. 108, 206808 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Zhang, P. & Wu, M. W. Electron spin relaxation in graphene with random Rashba field: comparison of the D’yakonov–Perel’ and Elliott–Yafet-like mechanisms. N. J. Phys. 14, 033015 (2012).

    Article  CAS  Google Scholar 

  44. 44.

    Fabian, J., Matos-Abiague, A., Ertler, C. & Zutic, I. Semiconductor spintronics. Acta Phys. Slov. 57, 565–907 (2007).

    CAS  Google Scholar 

  45. 45.

    Vila, M. et al. Nonlocal spin dynamics in the crossover from diffusive to ballistic transport. Phys. Rev. Lett. 124, 196602 (2020).

    CAS  Article  Google Scholar 

  46. 46.

    Guimarães, M. H. D. et al. Controlling spin relaxation in hexagonal bn-encapsulated graphene with a transverse electric field. Phys. Rev. Lett. 113, 086602 (2014).

    Article  Google Scholar 

  47. 47.

    Raes, B. et al. Determination of the spin-lifetime anisotropy in graphene using oblique spin precession. Nat. Commun. 7, 11444 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Benítez, L. A. et al. Investigating the spin-orbit interaction in van der Waals heterostructures by means of the spin relaxation anisotropy. APL Mater. 7, 120701 (2019).

    Article  CAS  Google Scholar 

  49. 49.

    Raes, B. et al. Spin precession in anisotropic media. Phys. Rev. B 95, 085403 (2017).

    Article  Google Scholar 

  50. 50.

    Ringer, S. et al. Measuring anisotropic spin relaxation in graphene. Phys. Rev. B 97, 205439 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Cummings, A. W., Garcia, J. H., Fabian, J. & Roche, S. Giant spin lifetime anisotropy in graphene induced by proximity effects. Phys. Rev. Lett. 119, 206601 (2017).

    Article  Google Scholar 

  52. 52.

    Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5, 266–270 (2010).

    CAS  Article  Google Scholar 

  53. 53.

    Wen, H. et al. Experimental demonstration of XOR operation in graphene magnetologic gates at room temperature. Phys. Rev. Appl. 5, 044003 (2016).

    Article  CAS  Google Scholar 

  54. 54.

    Lin, X. et al. Gate-driven pure spin current in graphene. Phys. Rev. Appl. 8, 034006 (2017).

    Article  Google Scholar 

  55. 55.

    Ingla-Aynés, j., Meijerink, R. J. & van Wees, B. J. Eighty-eight percent directional guiding of spin currents with 90 μm relaxation length in bilayer graphene using carrier drift. Nano Lett. 16, 4825–4830 (2016).

    Article  CAS  Google Scholar 

  56. 56.

    Sierra, J. F. et al. Thermoelectric spin voltage in graphene. Nat. Nanotechnol. 13, 107–111 (2018).

    CAS  Article  Google Scholar 

  57. 57.

    Sierra, J. F., Neumann, I., Costache, M. V. & Valenzuela, S. O. Hot-carrier Seebeck effect: diffusion and remote detection of hot carriers in graphene. Nano Lett. 15, 4000–4005 (2015).

    CAS  Article  Google Scholar 

  58. 58.

    Abdelouahed, S., Ernst, A., Henk, J., Maznichenko, I. V. & Mertig, I. Spin-split electronic states in graphene: effects due to lattice deformation, Rashba effect, and adatoms by first principles. Phys. Rev. B 82, 125424 (2010).

    Article  CAS  Google Scholar 

  59. 59.

    Konschuh, S., Gmitra, M., Kochan, D. & Fabian, J. Theory of spin-orbit coupling in bilayer graphene. Phys. Rev. B 85, 115423 (2012).

    Article  CAS  Google Scholar 

  60. 60.

    Banszerus, L. et al. Observation of the spin-orbit gap in bilayer graphene by one-dimensional ballistic transport. Phys. Rev. Lett. 124, 177701 (2020).

    CAS  Article  Google Scholar 

  61. 61.

    Zollner, K., Gmitra, M. & Fabian, J. Heterostructures of graphene and hBN: electronic, spin-orbit, and spin relaxation properties from first principles. Phys. Rev. B 99, 125151 (2019).

    CAS  Article  Google Scholar 

  62. 62.

    Gmitra, M., Kochan, D., Högl, P. & Fabian, J. Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides. Phys. Rev. B 93, 155104 (2016).

    Article  CAS  Google Scholar 

  63. 63.

    Kochan, D., Irmer, S. & Fabian, J. Model spin-orbit coupling Hamiltonians for graphene systems. Phys. Rev. B 95, 165415 (2017).

    Article  Google Scholar 

  64. 64.

    Rossi, E. & Triola, C. Van Der Waals heterostructures with spin-orbit coupling. Ann. Phys. 532, 1900344 (2020).

    CAS  Article  Google Scholar 

  65. 65.

    Li, Y. & Koshino, M. Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B 99, 075438 (2019).

    CAS  Article  Google Scholar 

  66. 66.

    David, A. Induced spin-orbit coupling in twisted graphene–transition metal dichalcogenide heterobilayers: twistronics meets spintronics. Phys. Rev. B 100, 085412 (2019).

    CAS  Article  Google Scholar 

  67. 67.

    Alsharari, A. M., Asmar, M. M. & Ulloa, S. E. Topological phases and twisting of graphene on a dichalcogenide monolayer. Phys. Rev. B 98, 195129 (2018).

    CAS  Article  Google Scholar 

  68. 68.

    Wang, T., Bultinck, N. & Zaletel, M. P. Flat-band topology of magic angle graphene on a transition metal dichalcogenide. Phys. Rev. B 102, 235146 (2020).

    CAS  Article  Google Scholar 

  69. 69.

    Zollner, K. & Fabian, J. Heterostructures of graphene and topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. Phys. Stat. Solidi B 258, 2000081 (2021).

    CAS  Article  Google Scholar 

  70. 70.

    Song, K. et al. Spin proximity effects in graphene/topological insulator heterostructures. Nano Lett. 18, 2033–2039 (2018).

    CAS  Article  Google Scholar 

  71. 71.

    Zollner, K. & Fabian, J. Single and bilayer graphene on the topological insulator Bi2Se3: electronic and spin-orbit properties from first principles. Phys. Rev. B 100, 165141 (2019).

    CAS  Article  Google Scholar 

  72. 72.

    Wang, Z. et al. Strong interface-induced spin–orbit interaction in graphene on WS2. Nat. Commun. 6, 8339 (2015).

    CAS  Article  Google Scholar 

  73. 73.

    Wang, Z. et al. Origin and magnitude of ‘designer’ spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides. Phys. Rev. X 6, 041020 (2016).

    Google Scholar 

  74. 74.

    Yang, B. et al. Tunable spin–orbit coupling and symmetry-protected edge states in graphene/WS2. 2D Mater. 3, 031012 (2016).

    Article  CAS  Google Scholar 

  75. 75.

    Völkl, T. et al. Magnetotransport in heterostructures of transition metal dichalcogenides and graphene. Phys. Rev. B 96, 125405 (2017).

    Article  Google Scholar 

  76. 76.

    Zihlmann, S. et al. Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/graphene/h-BN heterostructures. Phys. Rev. B 97, 075434 (2018).

    CAS  Article  Google Scholar 

  77. 77.

    Högl, P. et al. Quantum anomalous Hall effects in graphene from proximity-induced uniform and staggered spin-orbit and exchange coupling. Phys. Rev. Lett. 124, 136403 (2020).

    Article  Google Scholar 

  78. 78.

    Frank, T., Högl, P., Gmitra, M., Kochan, D. & Fabian, J. Protected pseudohelical edge states in Z2-trivial proximitized graphene. Phys. Rev. Lett. 120, 156402 (2018).

    CAS  Article  Google Scholar 

  79. 79.

    Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    CAS  Article  Google Scholar 

  80. 80.

    Island, J. O. et al. Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect. Nature 571, 85–89 (2019).

    CAS  Article  Google Scholar 

  81. 81.

    Alsharari, A. M., Asmar, M. M. & Ulloa, S. E. Proximity-induced topological phases in bilayer graphene. Phys. Rev. B 97, 241104 (2018).

    CAS  Article  Google Scholar 

  82. 82.

    Tiwari, P., Srivastav, S. K., Ray, S., Das, T. & Bid, A. Observation of time-reversal invariant helical edge-modes in bilayer graphene/WSe2 heterostructure. ACS Nano 15, 916–922 (2021).

    CAS  Article  Google Scholar 

  83. 83.

    Wang, H. et al. Above room-temperature ferromagnetism in wafer-scale two-dimensional van der Waals Fe3GeTe2 tailored by a topological insulator. ACS Nano 14, 10045–10053 (2020).

    CAS  Article  Google Scholar 

  84. 84.

    Matsuoka, H. et al. Spin–orbit-induced Ising ferromagnetism at a van der Waals Interface. Nano Lett. 21, 1807–1814 (2021).

    CAS  Article  Google Scholar 

  85. 85.

    Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 1–15 (2017).

    Article  CAS  Google Scholar 

  86. 86.

    Wu, Y. et al. Néel-type skyrmion in WTe2 /Fe3GeTe2 van der Waals heterostructure. Nat. Commun. 11, 3860 (2020).

    Article  CAS  Google Scholar 

  87. 87.

    Yan, W. et al. A two-dimensional spin field-effect switch. Nat. Commun. 7, 13372 (2016).

    CAS  Article  Google Scholar 

  88. 88.

    Dankert, A. & Dash, S. P. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 8, 16093 (2017).

    CAS  Article  Google Scholar 

  89. 89.

    Ghiasi, T. S., Ingla-Aynés, J., Kaverzin, A. A. & van Wees, B. J. Large proximity-induced spin lifetime anisotropy in transition-metal dichalcogenide/graphene heterostructures. Nano Lett. 17, 7528–7532 (2017).

    CAS  Article  Google Scholar 

  90. 90.

    Benítez, L. A. et al. Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature. Nat. Phys. 14, 303–308 (2018).

    Article  CAS  Google Scholar 

  91. 91.

    Offidani, M. & Ferreira, A. Microscopic theory of spin relaxation anisotropy in graphene with proximity-induced spin–orbit coupling. Phys. Rev. B 98, 245408 (2018).

    CAS  Article  Google Scholar 

  92. 92.

    Garcia, J. H., Vila, M., Cummings, A. W. & Roche, S. Spin transport in graphene/transition metal dichalcogenide heterostructures. Chem. Soc. Rev. 47, 3359–3379 (2018).

    CAS  Article  Google Scholar 

  93. 93.

    Xu, J., Zhu, T., Luo, Y. K., Lu, Y.-M. & Kawakami, R. K. Strong and tunable spin-lifetime anisotropy in dual-gated bilayer graphene. Phys. Rev. Lett. 121, 127703 (2018).

    CAS  Article  Google Scholar 

  94. 94.

    Leutenantsmeyer, J. C., Ingla-Aynés, J., Fabian, J. & van Wees, B. J. Observation of spin-valley-coupling-induced large spin-lifetime anisotropy in bilayer graphene. Phys. Rev. Lett. 121, 127702 (2018).

    CAS  Article  Google Scholar 

  95. 95.

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  Google Scholar 

  96. 96.

    Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    CAS  Article  Google Scholar 

  97. 97.

    MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).

    CAS  Article  Google Scholar 

  98. 98.

    Shi, S. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).

    CAS  Article  Google Scholar 

  99. 99.

    Liang, S. et al. Spin-orbit torque magnetization switching in MoTe2/permalloy heterostructures. Adv. Mater. 32, 2002799 (2020).

    CAS  Article  Google Scholar 

  100. 100.

    Dushenko, S. et al. Gate-tunable spin-charge conversion and the role of spin-orbit interaction in graphene. Phys. Rev. Lett. 116, 166102 (2016).

    CAS  Article  Google Scholar 

  101. 101.

    Safeer, C. K. et al. Room-temperature spin Hall effect in graphene/MoS2 van der Waals heterostructures. Nano Lett. 19, 1074–1082 (2019).

    CAS  Article  Google Scholar 

  102. 102.

    Benítez, L. A. et al. Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures. Nat. Mater. 19, 170–175 (2020).

    Article  CAS  Google Scholar 

  103. 103.

    Ghiasi, T. S., Kaverzin, A. A., Blah, P. J. & van Wees, B. J. Charge-to-spin conversion by the Rashba–Edelstein effect in two-dimensional van der Waals heterostructures up to room temperature. Nano Lett. 19, 5959–5966 (2019).

    CAS  Article  Google Scholar 

  104. 104.

    Yan, W. et al. Large room temperature spin-to-charge conversion signals in a few-layer graphene/Pt lateral heterostructure. Nat. Commun. 8, 661 (2017).

    Article  CAS  Google Scholar 

  105. 105.

    Savero Torres, W. et al. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures. 2D Mater. 4, 041008 (2017).

    Article  CAS  Google Scholar 

  106. 106.

    Garcia, J. H., Cummings, A. W. & Roche, S. Spin Hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures. Nano Lett. 17, 5078–5083 (2017).

    CAS  Article  Google Scholar 

  107. 107.

    Offidani, M., Milletarì, M., Raimondi, R. & Ferreira, A. Optimal charge-to-spin conversion in graphene on transition-metal dichalcogenides. Phys. Rev. Lett. 119, 196801 (2017).

    Article  Google Scholar 

  108. 108.

    Milletarì, M., Offidani, M., Ferreira, A. & Raimondi, R. Covariant conservation laws and the spin Hall effect in Dirac-Rashba systems. Phys. Rev. Lett. 119, 246801 (2017).

    Article  Google Scholar 

  109. 109.

    Li, L. et al. Gate-tunable reversible Rashba–Edelstein effect in a few-layer graphene/2H-TaS2 heterostructure at room temperature. ACS Nano 14, 5251–5259 (2020).

    Article  CAS  Google Scholar 

  110. 110.

    Herling, F. et al. Gate tunability of highly efficient spin-to-charge conversion by spin Hall effect in graphene proximitized with WSe2. APL Mater. 8, 071103 (2020).

    CAS  Article  Google Scholar 

  111. 111.

    Khokhriakov, D., Hoque, A. M., Karpiak, B. & Dash, S. P. Gate-tunable spin-galvanic effect in graphene-topological insulator van der Waals heterostructures at room temperature. Nat. Commun. 11, 3657 (2020).

    CAS  Article  Google Scholar 

  112. 112.

    Avsar, A. et al. Spin–orbit proximity effect in graphene. Nat. Commun. 5, 4875 (2014).

    CAS  Article  Google Scholar 

  113. 113.

    Van Tuan, D. et al. Spin Hall effect and origins of nonlocal resistance in adatom-decorated graphene. Phys. Rev. Lett. 117, 176602 (2016).

    Article  CAS  Google Scholar 

  114. 114.

    Ribeiro, M., Power, S. R., Roche, S., Hueso, L. E. & Casanova, F. Scale-invariant large nonlocality in polycrystalline graphene. Nat. Commun. 8, 2198 (2017).

    Article  CAS  Google Scholar 

  115. 115.

    Völkl, T. et al. Absence of a giant spin Hall effect in plasma-hydrogenated graphene. Phys. Rev. B 99, 085401 (2019).

    Article  Google Scholar 

  116. 116.

    Safeer, C. K. et al. Large multidirectional spin-to-charge conversion in low-symmetry semimetal MoTe2 at room temperature. Nano Lett. 19, 8758–8766 (2019).

    CAS  Article  Google Scholar 

  117. 117.

    Li, P. et al. Spin-momentum locking and spin-orbit torques in magnetic nano-heterojunctions composed of Weyl semimetal WTe2. Nat. Commun. 9, 3990 (2018).

    Article  CAS  Google Scholar 

  118. 118.

    Zhao, B. et al. Unconventional charge–spin conversion in Weyl-semimetal WTe2. Adv. Mater. 32, 2000818 (2020).

    CAS  Article  Google Scholar 

  119. 119.

    Yang, H. X. et al. Proximity effects induced in graphene by magnetic insulators: first-principles calculations on spin filtering and exchange-splitting gaps. Phys. Rev. Lett. 110, 046603 (2013).

    CAS  Article  Google Scholar 

  120. 120.

    Hallal, A., Ibrahim, F., Yang, H., Roche, S. & Chshiev, M. Tailoring magnetic insulator proximity effects in graphene: first-principles calculations. 2D Mater. 4, 025074 (2017).

    Article  CAS  Google Scholar 

  121. 121.

    Zollner, K., Gmitra, M., Frank, T. & Fabian, J. Theory of proximity-induced exchange coupling in graphene on hBN/(Co, Ni). Phys. Rev. B 94, 155441 (2016).

    Article  CAS  Google Scholar 

  122. 122.

    Lazić, P., Belashchenko, K. D. & Žutić, I. Effective gating and tunable magnetic proximity effects in two-dimensional heterostructures. Phys. Rev. B 93, 241401 (2016).

    Article  Google Scholar 

  123. 123.

    Ibrahim, F. et al. Unveiling multiferroic proximity effect in graphene. 2D Mater. 7, 015020 (2019).

    Article  CAS  Google Scholar 

  124. 124.

    Wang, Z., Tang, C., Sachs, R., Barlas, Y. & Shi, J. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys. Rev. Lett. 114, 016603 (2015).

    CAS  Article  Google Scholar 

  125. 125.

    Wei, P. et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 15, 711–716 (2016).

    CAS  Article  Google Scholar 

  126. 126.

    Leutenantsmeyer, J. C., Kaverzin, A. A., Wojtaszek, M. & van Wees, B. J. Proximity induced room temperature ferromagnetism in graphene probed with spin currents. 2D Mater. 4, 014001 (2017).

    Article  CAS  Google Scholar 

  127. 127.

    Singh, S. et al. Strong modulation of spin currents in bilayer graphene by static and fluctuating proximity exchange fields. Phys. Rev. Lett. 118, 187201 (2017).

    Article  Google Scholar 

  128. 128.

    Tang, C. et al. Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure. APL Mater. 6, 026401 (2017).

    Article  CAS  Google Scholar 

  129. 129.

    Asshoff, P. U. et al. Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene. 2D Mater. 4, 031004 (2017).

    Article  CAS  Google Scholar 

  130. 130.

    Zollner, K. et al. Scattering-induced and highly tunable by gate damping-like spin-orbit torque in graphene doubly proximitized by two-dimensional magnet Cr2Ge2Te6 and monolayer WSe2. Phys. Rev. Res. 2, 043057 (2020).

    CAS  Article  Google Scholar 

  131. 131.

    Ghiasi, T. S. et al. Electrical and thermal generation of spin currents by magnetic bilayer graphene. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-00887-3 (2021).

  132. 132.

    Wu, Y. et al. Large exchange splitting in monolayer graphene magnetized by an antiferromagnet. Nat. Electron. 3, 604–611 (2020).

    CAS  Article  Google Scholar 

  133. 133.

    Ghazaryan, D. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).

    CAS  Article  Google Scholar 

  134. 134.

    Zhao, C. et al. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol. 12, 757–762 (2017).

    CAS  Article  Google Scholar 

  135. 135.

    Norden, T. et al. Giant valley splitting in monolayer WS2 by magnetic proximity effect. Nat. Commun. 10, 4163 (2019).

    Article  CAS  Google Scholar 

  136. 136.

    Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article  Google Scholar 

  137. 137.

    Zhong, D. et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol. 15, 187–191 (2020).

    CAS  Article  Google Scholar 

  138. 138.

    Zollner, K., Faria Junior, P. E. & Fabian, J. Proximity exchange effects in MoSe2 and WSe2 heterostructures with CrI3: twist angle, layer, and gate dependence. Phys. Rev. B 100, 085128 (2019).

    CAS  Article  Google Scholar 

  139. 139.

    Scharf, B., Xu, G., Matos-Abiague, A. & Žutić, I. Magnetic proximity effects in transition-metal dichalcogenides: converting excitons. Phys. Rev. Lett. 119, 127403 (2017).

    Article  Google Scholar 

  140. 140.

    Lyons, T. P. et al. Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe2/CrBr3 van der Waals heterostructures. Nat. Commun. 11, 6021 (2020).

    CAS  Article  Google Scholar 

  141. 141.

    Bhattacharyya, S. et al. Recent progress in proximity coupling of magnetism to topological insulators. Preprint at https://arxiv.org/abs/2012.11248 (2020).

  142. 142.

    Jiang, Z. et al. Independent tuning of electronic properties and induced ferromagnetism in topological insulators with heterostructure approach. Nano Lett. 15, 5835–5840 (2015).

    CAS  Article  Google Scholar 

  143. 143.

    Tang, C. et al. Above 400-K robust perpendicular ferromagnetic phase in a topological insulator. Sci. Adv. 3, e1700307 (2017).

    Article  CAS  Google Scholar 

  144. 144.

    Mogi, M. et al. Current-induced switching of proximity-induced ferromagnetic surface states in a topological insulator. Nat. Commun. 12, 1404 (2021).

    CAS  Article  Google Scholar 

  145. 145.

    Katmis, F. et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513–516 (2016).

    CAS  Article  Google Scholar 

  146. 146.

    Krieger, J. A. et al. Do topology and ferromagnetism cooperate at the EuS/Bi2Se3 interface? Phys. Rev. B 99, 064423 (2019).

    CAS  Article  Google Scholar 

  147. 147.

    Pereira, V. M. et al. Topological insulator interfaced with ferromagnetic insulators: Bi2Te3 thin films on magnetite and iron garnets. Phys. Rev. Mater. 4, 064202 (2020).

    CAS  Article  Google Scholar 

  148. 148.

    Figueroa, A. I. et al. Absence of magnetic proximity effect at the interface of Bi2Se3 and (Bi,Sb)2Te3 with EuS. Phys. Rev. Lett. 125, 226801 (2020).

    CAS  Article  Google Scholar 

  149. 149.

    Watanabe, R. et al. Quantum anomalous Hall effect driven by magnetic proximity coupling in all-telluride based heterostructure. Appl. Phys. Lett. 115, 102403 (2019).

    Article  CAS  Google Scholar 

  150. 150.

    Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    CAS  Article  Google Scholar 

  151. 151.

    Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017).

    CAS  Article  Google Scholar 

  152. 152.

    Garcia, J. H. et al. Canted persistent spin texture and quantum spin Hall effect in WTe2. Phys. Rev. Lett. 125, 256603 (2020).

    CAS  Article  Google Scholar 

  153. 153.

    Zhao, W. et al. Determination of the helical edge and bulk spin axis in quantum spin Hall insulator WTe2. Preprint at https://arxiv.org/abs/2010.09986 (2020).

  154. 154.

    Tan, C. et al. Determination of the spin orientation of helical electrons in monolayer WTe2. Preprint at https://arxiv.org/abs/2010.15717 (2020).

  155. 155.

    Zhao, W. et al. Magnetic proximity and nonreciprocal current switching in a monolayer WTe2 helical edge. Nat. Mater. 19, 503–507 (2020).

    CAS  Article  Google Scholar 

  156. 156.

    Alghamdi, M. et al. Highly efficient spin–orbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Lett. 19, 4400–4405 (2019).

    CAS  Article  Google Scholar 

  157. 157.

    Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646–661 (2019).

    Article  Google Scholar 

  158. 158.

    Dolui, K. et al. Proximity spin–orbit torque on a two-dimensional magnet within van der Waals heterostructure: current-driven antiferromagnet-to-ferromagnet reversible nonequilibrium phase transition in bilayer CrI3. Nano Lett. 20, 2288–2295 (2020).

    CAS  Article  Google Scholar 

  159. 159.

    Gmitra, M. & Fabian, J. Proximity effects in bilayer graphene on monolayer WSe2: field-effect spin valley locking, spin-orbit valve, and spin transistor. Phys. Rev. Lett. 119, 146401 (2017).

    Article  Google Scholar 

  160. 160.

    Khoo, J. Y., Morpurgo, A. F. & Levitov, L. On-demand spin–orbit interaction from which-layer tunability in bilayer graphene. Nano Lett. 17, 7003–7008 (2017).

    CAS  Article  Google Scholar 

  161. 161.

    Michetti, P., Recher, P. & Iannaccone, G. Electric field control of spin rotation in bilayer graphene. Nano Lett. 10, 4463–4469 (2010).

    CAS  Article  Google Scholar 

  162. 162.

    Zollner, K., Gmitra, M. & Fabian, J. Electrically tunable exchange splitting in bilayer graphene on monolayer Cr2X2Te6 with X = Ge, Si, and Sn. N. J. Phys. 20, 073007 (2018).

    Article  CAS  Google Scholar 

  163. 163.

    Cardoso, C., Soriano, D., García-Martínez, N. A. & Fernández-Rossier, J. Van der Waals spin valves. Phys. Rev. Lett. 121, 067701 (2018).

    CAS  Article  Google Scholar 

  164. 164.

    Zollner, K., Gmitra, M. & Fabian, J. Swapping exchange and spin-orbit coupling in 2D van der Waals heterostructures. Phys. Rev. Lett. 125, 196402 (2020).

    CAS  Article  Google Scholar 

  165. 165.

    Liu, C.-X., Zhang, S.-C. & Qi, X.-L. The quantum anomalous Hall effect: theory and experiment. Annu. Rev. Condens. Matter Phys. 7, 301–321 (2016).

    Article  Google Scholar 

  166. 166.

    Zhang, J., Zhao, B., Yao, Y. & Yang, Z. Robust quantum anomalous Hall effect in graphene-based van der Waals heterostructures. Phys. Rev. B 92, 165418 (2015).

    Article  CAS  Google Scholar 

  167. 167.

    Chen, W. et al. Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366, 983–987 (2019).

    CAS  Article  Google Scholar 

  168. 168.

    Xing, W. et al. Magnon transport in quasi-two-dimensional van der Waals antiferromagnets. Phys. Rev. X 9, 011026 (2019).

    CAS  Google Scholar 

  169. 169.

    Liu, T. et al. Spin caloritronics in a CrBr3 magnetic van der Waals heterostructure. Phys. Rev. B 101, 205407 (2020).

    CAS  Article  Google Scholar 

  170. 170.

    Yang, M. et al. Creation of skyrmions in van der Waals ferromagnet Fe3GeTe2 on (Co/Pd)n superlattice. Sci. Adv. 6, eabb5157 (2020).

    CAS  Article  Google Scholar 

  171. 171.

    Ding, B. et al. Observation of magnetic skyrmion bubbles in a van der Waals ferromagnet Fe3GeTe2. Nano Lett. 20, 868–873 (2020).

    CAS  Article  Google Scholar 

  172. 172.

    Meijer, M. J. et al. Chiral spin spirals at the surface of the van der Waals ferromagnet Fe3GeTe2. Nano Lett. 20, 8563–8568 (2020).

    CAS  Article  Google Scholar 

  173. 173.

    Liang, J. et al. Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states. Phys. Rev. B 101, 184401 (2020).

    CAS  Article  Google Scholar 

  174. 174.

    Zhang, L. et al. Proximity-coupling-induced significant enhancement of coercive field and Curie temperature in 2D van der Waals heterostructures. Adv. Mater. 32, 2002032 (2020).

    CAS  Article  Google Scholar 

  175. 175.

    Giustino, F. et al. The 2020 quantum materials roadmap. J. Phys. Mater. 3, 042006 (2020).

    CAS  Article  Google Scholar 

  176. 176.

    Lin, X., Yang, W., Wang, K. L. & Zhao, W. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2, 274–283 (2019).

    CAS  Article  Google Scholar 

  177. 177.

    Savero Torres, W. et al. Magnetism, spin dynamics, and quantum transport in two-dimensional systems. MRS Bull. 45, 357–365 (2020).

    Article  Google Scholar 

  178. 178.

    Kamalakar, M. V., Groenveld, C., Dankert, A. & Dash, S. P. Long distance spin communication in chemical vapour deposited graphene. Nat. Commun. 6, 6766 (2015).

    CAS  Article  Google Scholar 

  179. 179.

    Ingla-Aynés, J., Kaverzin, A. A. & van Wees, B. J. Carrier drift control of spin currents in graphene-based spin-current demultiplexers. Phys. Rev. Appl. 10, 044073 (2018).

    Article  Google Scholar 

  180. 180.

    Qi, J., Li, X., Niu, Q. & Feng, J. Giant and tunable valley degeneracy splitting in MoTe2. Phys. Rev. B 92, 121403 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Torres (ICN2) for help in implementing the 3D device models used in the figures. J.F.S. and S.O.V. acknowledge support of the European Union’s Horizon 2020 FET-PROACTIVE project TOCHA under grant agreement 824140, the King Abdullah University of Science and Technology (KAUST) through award number OSR-2018-CRG7-3717 and MINECO under contract numbers PID2019-111773RB-I00/AEI/10.13039/501100011033, RYC2019-028368-I/AEI/10.13039/50110001103 and SEV-2017-0706 Severo Ochoa. J.F., S.R. and S.O.V. acknowledge support from the European Union Horizon 2020 Research and Innovation Program under contract number 881603 (Graphene Flagship) and J.F. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German research Foundation) under grant numbers SFB 1277 (project-id:314695032) and SPP 2244. R.K.K. acknowledges support from the US DOE-BES (grant number DE-SC0016379), AFOSR MURI 2D MAGIC (grant number FA9550-19-1-0390) and NSF MRSEC (grant number DMR-2011876).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Juan F. Sierra or Sergio O. Valenzuela.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Guo-Xing Miao, Stefano Sanvito and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sierra, J.F., Fabian, J., Kawakami, R.K. et al. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856–868 (2021). https://doi.org/10.1038/s41565-021-00936-x

Download citation

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research