Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics

Abstract

The successful in vivo implementation of gene expression modulation strategies relies on effective, non-immunogenic delivery vehicles. Lipid nanoparticles are one of the most advanced non-viral clinically approved nucleic-acid delivery systems. Yet lipid nanoparticles accumulate naturally in liver cells upon intravenous administration, and hence, there is an urgent need to enhance uptake by other cell types. Here we use a conformation-sensitive targeting strategy to achieve in vivo gene silencing in a selective subset of leukocytes and show potential therapeutic applications in a murine model of colitis. In particular, by targeting the high-affinity conformation of α4β7 integrin, which is a hallmark of inflammatory gut-homing leukocytes, we silenced interferon-γ in the gut, resulting in an improved therapeutic outcome in experimental colitis. The lipid nanoparticles did not induce adverse immune activation or liver toxicity. These results suggest that our lipid nanoparticle targeting strategy might be applied for selective delivery of payloads to other conformation-sensitive targets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Generation of LNPs to target the high-affinity conformation of integrin α4β7.
Fig. 2: Characterization of D1D2, LNPs and D1D2-targeted LNPs.
Fig. 3: Molecular imaging of inflammatory leukocytes in experimental colitis using positron emission tomography–computed tomography (PET/CT) and D1D2-NOTA-64Cu.
Fig. 4: In vivo gene silencing of CD45 using D1D2-targeted LNPs in both healthy mice and mice with colitis.
Fig. 5: Safety profile of different LNP formulations.
Fig. 6: Therapeutic gene silencing of IFN-γ using D1D2 LNPs in the PAC model.

Data availability

All relevant data are available from the authors upon reasonable request.

References

  1. 1.

    Elinav, E. & Peer, D. Harnessing nanomedicine for mucosal theranostics—a silver bullet at last? ACS Nano 7, 2883–2890 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Hanauer, S. B. et al. Incidence and importance of antibody responses to infliximab after maintenance or episodic treatment in Crohn’s disease. Clin. Gastroenterol. Hepatol. 2, 542–553 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    Baert, F. et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N. Engl. J. Med. 348, 601–608 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    Kedmi, R. et al. A modular platform for targeted RNAi therapeutics. Nat. Nanotechnol. 13, 214–219 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Veiga, N. et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).

    Article  Google Scholar 

  6. 6.

    Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    Fenske, D. B., Chonn, A. & Cullis, P. R. Liposomal nanomedicines: an emerging field. Toxicol. Pathol. 36, 21–29 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    Ledford, H. Gene silencing technology gets first drug approval after 20-year wait. Nature 560, 291–292 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Ramishetti, S. et al. Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano 9, 6706–6716 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Peer, D., Park, E. J., Morishita, Y., Carman, C. V. & Shimaoka, M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319, 627–630 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    Meenan, J. et al. Altered expression of α4β7, a gut homing integrin, by circulating and mucosal T cells in colonic mucosal inflammation. Gut 40, 241–246 (1997).

    CAS  Article  Google Scholar 

  12. 12.

    Yu, Y. et al. Structural specializations of α4β7, an integrin that mediates rolling adhesion. J. Cell Biol. 196, 131–146 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Sun, H. et al. Distinct chemokine signaling regulates integrin ligand specificity to dictate tissue-specific lymphocyte homing. Dev. Cell 30, 61–70 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Lichtenstein, G. R., Hanauer, S. B. & Sandborn, W. J. Risk of biologic therapy-associated progressive multifocal leukoencephalopathy: use of the JC virus antibody assay in the treatment of moderate-to-severe Crohn’s disease. Gastroenterol. Hepatol. 8, 1–20 (2012).

  15. 15.

    Green, N. et al. Mutational analysis of MAdCAM-1/α4β7 interactions reveals significant binding determinants in both the first and second immunuglobulin domains. Cell Adhes. Commun. 7, 167–181 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    Shyjan, A. M., Bertagnolli, M., Kenney, C. J. & Briskin, M. J. Human mucosal addressin cell adhesion molecule-1 (MAdCAM-1) demonstrates structural and functional similarities to the α4β7-integrin binding domains of murine MAdCAM-1, but extreme divergence of mucin-like sequences. J. Immunol. 156, 2851–2857 (1996).

    CAS  Google Scholar 

  17. 17.

    Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185–195 (1993).

    CAS  Article  Google Scholar 

  18. 18.

    Dearling, J. L. J. et al. Detection of intestinal inflammation by MicroPET imaging using a 64Cu-labeled anti-β7 integrin antibody. Inflamm. Bowel Dis. 16, 1458–1466 (2010).

    Article  Google Scholar 

  19. 19.

    Dearling, J. L. J., Daka, A., Veiga, N., Peer, D. & Packard, A. B. Colitis immunoPET: defining target cell populations and optimizing pharmacokinetics. Inflamm. Bowel Dis. 22, 529–538 (2016).

    Article  Google Scholar 

  20. 20.

    Belliveau, N. M. et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids 1, e37 (2012).

    Article  Google Scholar 

  21. 21.

    Cohen, Z. R. et al. Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles. ACS Nano 9, 1581–1591 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Veiga, N. et al. Leukocyte-specific siRNA delivery revealing IRF8 as a potential anti-inflammatory target. J. Control Release 313, 33–41 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Rosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018).

    Article  Google Scholar 

  24. 24.

    Chassaing, B., Aitken, J. D., Malleshappa, M. & Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104, 15.25.1–15.25.14 (2014).

  25. 25.

    Dieleman, L. A. et al. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 107, 1643–1652 (1994).

    CAS  Article  Google Scholar 

  26. 26.

    Berg, D. J. et al. Rapid development of colitis in NSAID-treated IL-10 deficient mice. Gastroenterology 123, 1527–1542 (2002).

    CAS  Article  Google Scholar 

  27. 27.

    Holgersen, K., Kvist, P. H., Markholst, H., Kornerup Hansen, A. & Holm, T. L. Characterisation of enterocolitis in the piroxicam-accelerated interleukin-10 knock out mouse—a model mimicking inflammatory bowel disease J. Crohns Colitis 8, 147–160 (2012).

  28. 28.

    Holgersen, K., Kvist, P. H., Hansen, A. K. & Holm, T. L. Predictive validity and immune cell involvement in the pathogenesis of piroxicam-accelerated colitis in interleukin-10 knockout mice. Int. Immunopharmacol. 21, 137–147 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Connor, E. M., Eppihimer, M. J., Morise, Z., Granger, D. N. & Grisham, M. B. Expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in acute and chronic inflammation. J. Leukoc. Biol. 65, 349–355 (1999).

  30. 30.

    Ito, R. et al. Interferon-γ is causatively involved in experimental inflammatory bowel disease in mice. Clin. Exp. Immunol. 146, 330–338 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    Ferreiro, R. & Barreiro-de Acosta, M. Infliximab: Pharmacology, Uses and Limitations 1st edn (eds Acevedo, A. D. M. & Gaitan, M. F.) 39–74 (Nova Biomedical, 2012).

  32. 32.

    Vila-del Sol, V., Punzón, C. & Fresno, M. IFN-γ-induced TNF-α expression is regulated by interferon regulatory factors 1 and 8 in mouse macrophages. J. Immunol. 181, 4461–4470 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    Wesemann, D. R. & Benveniste, E. N. STAT-1α and IFN-γ as modulators of TNF-α signaling in macrophages: regulation and functional implications of the TNF receptor 1:STAT-1α complex. J. Immunol. 171, 5313–5319 (2003).

    CAS  Article  Google Scholar 

  34. 34.

    Shimaoka, M. et al. AL-57, a ligand-mimetic antibody to integrin LFA-1, reveals chemokine-induced affinity up-regulation in lymphocytes. Proc. Natl Acad. Sci. USA 103, 13991–13996 (2006).

    CAS  Article  Google Scholar 

  35. 35.

    Qi, J. P. et al. Identification, characterization, and epitope mapping of human monoclonal antibody J19 that specifically recognizes activated integrin α4β7. J. Biol. Chem. 287, 15749–15759 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Kinashi, T. Intracellular signalling controlling integrin activation in lymphocytes. Nat. Rev. Immunol. 5, 546–559 (2005).

    CAS  Article  Google Scholar 

  37. 37.

    Eun, J. P. et al. Aberrant activation of integrin α4β7suppresses lymphocyte migration to the gut. J. Clin. Invest. 117, 2526–2538 (2007).

    Article  Google Scholar 

  38. 38.

    YANG, Y. et al. Construction and adhesive properties of a soluble MAdCAM‐1–Fc chimera expressed in a baculovirus system: phylogenetic conservation of receptor–ligand interaction. Scand. J. Immunol. 42, 235–247 (1995).

    CAS  Article  Google Scholar 

  39. 39.

    Rungta, R. L. et al. Lipid nanoparticle delivery of siRNA to silence neuronal gene expression in the brain. Mol. Ther. Nucleic Acids 2, e136 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    McCall, M. J., Diril, H. & Meares, C. F. Simplified method for conjugating macrocyclic bifunctional chelating agents to antibodies via 2-iminothiolane. Bioconjugate Chem. 1, 222–226 (1990).

    CAS  Article  Google Scholar 

  41. 41.

    Loening, A. M. & Gambhir, S. S. AMIDE: a free software tool for multimodality medical image analysis. Mol. Imaging 2, 131–137 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank V. Holdengreber for assistance with the transmission electron microscopy analysis, P. Johnston for detailed statistical analysis of the molecular imaging part, S. Chatterjee for help with the confocal microscope and S. Jung for providing the IL-10KO mice. This work was supported by the ERC grant LeukoTheranostics (award no. 647410) to D.P.

Author information

Affiliations

Authors

Contributions

N.D. and D.P. conceived the study. N.D., S.R., N.V., M.G. and J.L.J.D. performed the experiments. N.D., J.L.J.D., A.B.P., M.G. and D.P. analysed the data. N.D. and D.P. wrote the manuscript.

Corresponding author

Correspondence to Dan Peer.

Ethics declarations

Competing interests

D.P. receives licensing fees (to patents on which he was an inventor) from, invested in, consults (or on scientific advisory boards or boards of directors) for, lectured (and received a fee) or conducts sponsored research at TAU for the following entities: Alnylam Pharmaceuticals Inc. Arix Biosciences Inc., ART Biosciences, BioNtech RNA pharmaceuticals; Centricus, Diagnostear Ltd., EPM Inc., Earli Inc., lmpetis Biosciences, Kernal Biologics, GPCR Inc., Medison Pharma Ltd., Newphase Ltd, NLC Pharma Ltd., Nanocell Therapeutics, NanoGhosts Ltd., Precision Nanosystems Inc., Paul Hastings Inc., Regulon, Roche, SciCann, Shire Inc., VLX Ventures, TATA Cooperation, Teva Pharmaceuticals Inc., Wize Pharma Ltd. All other authors declare no competing financial interests. None of them relates to this work. The rest of the authors declare no financial interests.

Additional information

Peer review information Nature Nanotechnology thanks Monica Baiula, JianFeng Chen, Yizhou Dong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dammes, N., Goldsmith, M., Ramishetti, S. et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021). https://doi.org/10.1038/s41565-021-00928-x

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research