Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes

Abstract

Our knowledge of uptake, toxicity and detoxification mechanisms as related to nanoparticles’ (NPs’) characteristics remains incomplete. Here we combine the analytical power of three advanced techniques to study the cellular binding and uptake and the intracellular transformation of silver nanoparticles (AgNPs): single-particle inductively coupled mass spectrometry, mass cytometry and synchrotron X-ray absorption spectrometry. Our results show that although intracellular and extracellularly bound AgNPs undergo major transformation depending on their primary size and surface coating, intracellular Ag in 24 h AgNP-exposed human lymphocytes exists in nanoparticulate form. Biotransformation of AgNPs is dominated by sulfidation, which can be viewed as one of the cellular detoxification pathways for Ag. These results also show that the toxicity of AgNPs is primarily driven by internalized Ag. In fact, when toxicity thresholds are expressed as the intracellular mass of Ag per cell, differences in toxicity between NPs of different coatings and sizes are minimized. The analytical approach developed here has broad applicability in different systems where the aim is to understand and quantify cell–NP interactions and biotransformation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Representative transmission electron microscopy (TEM) images and size measurements of AgNPs used in the study.
Fig. 2: Cellular binding and uptake of Ag in AgNP exposed cells at single cell and population level.
Fig. 3: Speciation of cell-surface-associated and intracellular Ag in AgNP-exposed human T lymphocytes according to synchrotron XAS analysis.
Fig. 4: The sp-ICP-MS results.

Data availability

The data that support the findings reported in this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Piao, M. J. et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 201, 92–100 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Beer, C., Foldbjerg, R., Hayashi, Y., Sutherland, D. S. & Autrup, H. Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol. Lett. 208, 286–292 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Chen, D. & Yang, Z. Tissue toxicity following the vaginal administration of nanosilver particles in rabbits. Regen. Biomater. 2, 261–265 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    McShan, D., Ray, P. C. & Yu, H. Molecular toxicity mechanism of nanosilver. J. Food Drug Anal. 22, 116–127 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Stensberg, M. C. et al. Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine 6, 879–898 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Kettler, K., Veltman, K., van de Meent, D., van Wezel, A. & Hendriks, A. J. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ. Toxicol. Chem. 33, 481–492 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Sabella, S. et al. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 6, 7052–7061 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Wang, Z. et al. Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells. ACS Nano 7, 4171–4186 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Park, E.-J., Yi, J., Kim, Y., Choi, K. & Park, K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. Vitr. 24, 872–878 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Setyawati, M. I., Yuan, X., Xie, J. & Leong, D. T. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials 35, 6707–6715 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Gliga, A. R., Skoglund, S., Odnevall Wallinder, I., Fadeel, B. & Karlsson, H. L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 11, 11 (2014).

    Article  CAS  Google Scholar 

  12. 12.

    Hsiao, I. L., Hsieh, Y.-K., Wang, C.-F., Chen, I. C. & Huang, Y.-J. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environ. Sci. Technol. 49, 3813–3821 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Ivask, A., Mitchell, A. J., Malysheva, A., Voelcker, N. H. & Lombi, E. Methodologies and approaches for the analysis of cell–nanoparticle interactions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. https://doi.org/10.1002/wnan.1486 (2018).

  14. 14.

    Ribeiro, F. et al. Uptake and elimination kinetics of silver nanoparticles and silver nitrate by Raphidocelis subcapitata: the influence of silver behaviour in solution. Nanotoxicology 9, 686–695 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Sekine, R. et al. Complementary imaging of silver nanoparticle interactions with green algae: dark-field microscopy, electron microscopy, and nanoscale secondary ion mass spectrometry. ACS Nano 11, 10894–10902 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Thorley, A. J., Ruenraroengsak, P., Potter, T. E. & Tetley, T. D. Critical determinants of uptake and translocation of nanoparticles by the human pulmonary alveolar epithelium. ACS Nano 8, 11778–11789 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Böhme, S., Stärk, H.-J., Kühnel, D. & Reemtsma, T. Exploring LA-ICP-MS as a quantitative imaging technique to study nanoparticle uptake in Daphnia magna and zebrafish (Danio rerio) embryos. Anal. Bioanal. Chem. 407, 5477–5485 (2015).

    Article  CAS  Google Scholar 

  18. 18.

    Drescher, D. et al. Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal. Chem. 84, 9684–9688 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Hsiao, I. L. et al. Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques. J. Nanobiotechnol. 14, 50 (2016).

    Article  CAS  Google Scholar 

  20. 20.

    Gilbert, B. et al. The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS Nano 6, 4921–4930 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Ivask, A. et al. Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing. Nanotoxicology 11, 150–156 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Jiang, X. et al. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 9, 181–189 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Wang, L. et al. Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano 9, 6532–6547 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Bandura, D. R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    Basiji, D. A., Ortyn, W. E., Liang, L., Venkatachalam, V. & Morrissey, P. Cellular image analysis and imaging by flow cytometry. Clin. Lab. Med. 27, 653–670 (2007).

    Article  Google Scholar 

  26. 26.

    Ivask, A. et al. Single cell level quantification of nanoparticle–cell interactions using mass cytometry. Anal. Chem. 89, 8228–8232 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Ivask, A. et al. Quantitative multimodal analyses of silver nanoparticle-cell interactions: implications for cytotoxicity. NanoImpact 1, 29–38 (2016).

    Article  Google Scholar 

  28. 28.

    Malysheva, A., Voelcker, N., Holm, P. E. & Lombi, E. Unraveling the complex behavior of AgNPs driving NP-cell interactions and toxicity to algal cells. Environ. Sci. Technol. 50, 12455–12463 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Peters, R. J. B. et al. Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Anal. Bioanal. Chem. 406, 3875–3885 (2014).

    CAS  Google Scholar 

  30. 30.

    Ivask, A. et al. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 8, 374–386 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Ivask, A. et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9, e102108 (2014).

    Article  CAS  Google Scholar 

  32. 32.

    Silva, T. et al. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci. Total Environ. 468-469, 968–976 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    Turnbull, T. et al. Cross-correlative single-cell analysis reveals biological mechanisms of nanoparticle radiosensitization. ACS Nano 13, 5077–5090 (2019).

    CAS  Article  Google Scholar 

  34. 34.

    Klausen, L. H., Fuhs, T. & Dong, M. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. Nat. Commun. https://doi.org/10.1038/ncomms12447 (2016).

  35. 35.

    Fröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 7, 5577–5591 (2012).

    Article  Google Scholar 

  36. 36.

    Lin, J. & Alexander-Katz, A. Cell membranes open “doors” for cationic nanoparticles/biomolecules: insights into uptake kinetics. ACS Nano 7, 10799–10808 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Ruenraroengsak, P. & Tetley, T. D. Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells. Part. Fibre Toxicol. 12, 19 (2015).

    Article  CAS  Google Scholar 

  38. 38.

    Wang, C. et al. Cationic surface modification of gold nanoparticles for enhanced cellular uptake and X-ray radiation therapy. J. Mater. Chem. B 3, 7372–7376 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Milić, M. et al. Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J. Appl. Toxicol. 35, 581–592 (2015).

    Article  CAS  Google Scholar 

  40. 40.

    Yu, S.-J. et al. Quantification of the uptake of silver nanoparticles and ions to HepG2 cells. Environ. Sci. Technol. 47, 3268–3274 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Wang, S., Lv, J., Ma, J. & Zhang, S. Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii. Nanotoxicology 10, 1129–1135 (2016).

    Article  CAS  Google Scholar 

  42. 42.

    Brunetti, G. et al. Fate of zinc and silver engineered nanoparticles in sewerage networks. Water Res. 77, 72–84 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Wang, P. et al. Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environ. Sci. Nano 4, 448–460 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Cotton, F. & Wilkinson, G. Advances in Inorganic Chemistry (John Wiley & Sons, 1980).

  45. 45.

    Stein, A. & Bailey, S. M. Redox biology of hydrogen sulfide: implications for physiology, pathophysiology, and pharmacology. Redox Biol. 1, 32–39 (2013).

    CAS  Article  Google Scholar 

  46. 46.

    Kimura, H. Production and physiological effects of hydrogen sulfide. Antioxid. Redox Signal 20, 783–793 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Vázquez Peláez, M., Costa-Fernández, J. M. & Sanz-Medel, A. Critical comparison between quadrupole and time-of-flight inductively coupled plasma mass spectrometers for isotope ratio measurements in elemental speciation. J. Anal. At. Spectrom. 17, 950–957 (2002).

    Article  Google Scholar 

  48. 48.

    Braun, G. B. et al. Etchable plasmonic nanoparticle probes to image and quantify cellular internalization. Nat. Mater. 13, 904–911 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    Pace, H. E. et al. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ. Sci. Technol. 46, 12272–12280 (2012).

    CAS  Article  Google Scholar 

  50. 50.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS  Article  Google Scholar 

  51. 51.

    Gräfe, M., Donner, E., Collins, R. N. & Lombi, E. Speciation of metal(loid)s in environmental samples by X-ray absorption spectroscopy: a critical review. Anal. Chim. Acta 822, 1–22 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Mitchell for his help with Cy-TOF and S. Ritch and G. Brunetti for their help with ICP-MS. A part of the work was undertaken on the XAS beamline at the Australian Synchrotron, part of the Australian Nuclear Science and Technology Organisation (ANSTO). We acknowledge support for N.H.V. from the Melbourne Centre for Nanofabrication, the Victorian Node of the Australian National Fabrication Facility.

Author information

Affiliations

Authors

Contributions

N.H.V. and E.L. conceived the research. A.M. and A.I. designed and conducted the experiments and contributed equally to the experimental work. A.M., A.I. and C.L.D. analysed the experimental results. N.H.V. and E.L. supervised the project. A.M., A.I. and C.L.D. drafted the manuscript, and N.H.V. and E.L. provided input and revisions.

Corresponding author

Correspondence to Enzo Lombi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Qiangbin Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Figs. 1–7.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malysheva, A., Ivask, A., Doolette, C.L. et al. Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes. Nat. Nanotechnol. (2021). https://doi.org/10.1038/s41565-021-00914-3

Download citation

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research