Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bridging international approaches on nanoEHS

The challenge of assessing the scope and magnitude of risk from nanomaterials is urgent for society and ignoring risks could be detrimental for development. This challenge is bigger than the individual capacities on each side of the Atlantic, but effective cross-Atlantic collaboration can solve essential riddles about the use of nanomaterials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Nel, A. E. Science 355, 1016–1018 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Nat. Cell. Biol. 19, 741–741 (2017).

  3. 3.

    Jasny, B. R. et al. Science 357, 759–761 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Nosek, B. A. & Errington, T. M. Elife 6, e23383 (2017).

    Article  Google Scholar 

  5. 5.

    Murphy, F. et al. Nat. Nanotechnol. 12, 717–719 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Wiesner, M. R. et al. Environ. Sci. Technol. 43, 6458–6462 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    Kenny, C., Washbourne C.-L., Tyler, C. & Blackstock, J. J. Palgrave Commun. 3, (2017).

  8. 8.

    Service, E. P. R. Scientific advice for policy makers in the EU (European Parliamentary Research Service, 2015).

  9. 9.

    Garraway, L. Nature 543, 613–615 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Martin, J. Nature 546, 577–577 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Friedersdorf, L. E. et al. Nat. Nanotechnol. 14, 996–998 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    Nature 546, 8–8 (2017).

  13. 13.

    The Malta Intiative. Bundesumweltministerium https://www.bmu.de/en/topics/health-chemical-safety-nanotechnology/nanotechnology/the-malta-initiative (2020).

  14. 14.

    Scott-Fordsmand, J. J. et al. Int. J. Environ. Res. Public Health 14, 1251 (2017).

    Article  Google Scholar 

  15. 15.

    Scott-Fordsmand, J. J. et al. Nano Today 7–10 (2017).

  16. 16.

    Westerhoff, P. et al. Nat. Nanotechnol. 13, 661–669 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Hendren, C. O. et al. Environ. Sci. Technol. 47, 1190–1205 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Svendsen, C. et al. Nat. Nanotechnol. 15, 731–742 (2020).

    CAS  Article  Google Scholar 

  19. 19.

    Amorim, M. J., Roca, C. P. & Scott-Fordsmand, J. J. Environ. Pollut. 218, 1370–1375 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Petersen, E. J. et al. Environ Sci Technol 49, 9532–9547 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Hund-Rinke, K. et al. Nanotoxicology 10, 1442–1447 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Scott-Fordsmand, J. J. et al. Environ. Pollut. 218, 1363–1364 (2016). ß.

    CAS  Article  Google Scholar 

  23. 23.

    Marchese Robinson, R. L. et al. Nanoscale 8, 9919–9943 (2016).

    Article  Google Scholar 

  24. 24.

    Hartmann, N. B., Ågerstrand, M., Lützhøft, H.-C. H. & Baun, A. NanoImpact 6, 81–89 (2017).

    Article  Google Scholar 

  25. 25.

    Tropsha, A., Mills, K. C. & Hickey, A. J. Nat. Nanotechnol. 12, 1111–1114 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Powers, C. M. et al. Beilstein J. Nanotechnol. 6, 1860–1871 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Thomas, D. G. et al. BMC Biotechnol. 13, 15 (2013).

    Article  Google Scholar 

  28. 28.

    Hasse, A., Klassig F. US Roadmap Nanoinformatics 2030 (EU Nanosafety Cluster, 2018).

  29. 29.

    European Union (EU) Observatory for Nanomaterials (EUON) 2017 (ECHA, accessed 1 February 2020); https://euon.echa.europa.eu/

  30. 30.

    CEP Final Report: The promise of evidence-based policymaking (Commission on Evidence-Based Policymaking, 2017).

  31. 31.

    Godwin, H. et al. ACS Nano 9, 3409–3417 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Oomen, A. G. et al. Int. J. Environ. Res. Public Health. 12, 13415–13434 (2015).

    Article  Google Scholar 

  33. 33.

    Grieger, K. et al. Nat. Nanotechnol. 14, 998–1001 (2019).

    CAS  Article  Google Scholar 

  34. 34.

    Holdren, J. R., Sunstein, C. R. & Siddiqui, I. A. Principles for Regulation and Oversight of Emerging Technologies (Executive Office of the President of the United States, 2011).

  35. 35.

    Feitshans, I. L. Global Health Impacts of Nanotechnology Law: A Tool for Stakeholder Engagement (Panstanford publications, 2018).

  36. 36.

    Recommendation of the Council on the Safety Testing and Assessment of Manufactured Nanomaterials (OECD, 2013).

  37. 37.

    Malloy, T., Trump, B. D. & Linkov, I. Environ. Sci. Technol. 50, 6822–6824 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Schulte, P. et al. J. Occup. Env. Hyg. 5, 239–249 (2008).

    CAS  Article  Google Scholar 

  39. 39.

    Trump, B. D., Hristozov, D., Malloy, T. & Linkov, I. Nano Today 21, 9–13 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Approaches to Develop or Use Concept of Grouping, Equivalence and Read-Across Based on Phyical-Chemical Properties (GER-PC) of Nanomaterials for Their Human Health and Ecosystem Hazard Assessment in Regulatory Regimes: Analysis of A Survey (Organisation for Economic Co-operation and Development, 2016).

  41. 41.

    Linkov, I. et al. Environ. Sys. Dec. 38, 170–176 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support to CESAM (UIDB/50017/2020 + UIDP/50017/2020), to FCT/MCTES through national funds (PIDDAC), and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020. Excellence Initiative of Aix-Marseille University - A*MIDEX, a French “Investissements d’Avenir” program, through the Labex SERENADE. National Science Foundation (EEC-1449500) Nanosystems Engineering Research Center on Nanotechnology-Enabled Water Treatment. The views and opinions expressed in this article are those of the individual authors and not those of the US Army, European Commission or other sponsor organizations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Janeck James Scott-Fordsmand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scott-Fordsmand, J.J., Amorim, M.J.d.B., de Garidel-Thoron, C. et al. Bridging international approaches on nanoEHS. Nat. Nanotechnol. 16, 608–611 (2021). https://doi.org/10.1038/s41565-021-00912-5

Download citation

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research