Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards FAIR nanosafety data

Matters Arising to this article was published on 23 December 2021


Nanotechnology is a key enabling technology with billions of euros in global investment from public funding, which include large collaborative projects that have investigated environmental and health safety aspects of nanomaterials, but the reuse of accumulated data is clearly lagging behind. Here we summarize challenges and provide recommendations for the efficient reuse of nanosafety data, in line with the recently established FAIR (findable, accessible, interoperable and reusable) guiding principles. We describe the FAIR-aligned Nanosafety Data Interface, with an aggregated findability, accessibility and interoperability across physicochemical, bio–nano interaction, human toxicity, omics, ecotoxicological and exposure data. Overall, we illustrate a much-needed path towards standards for the optimized use of existing data, which avoids duplication of efforts, and provides a multitude of options to promote safe and sustainable nanotechnology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Accessible nanosafety data.
Fig. 2: Interoperable nanosafety data.
Fig. 3: Reusable nanosafety data.

Similar content being viewed by others

Data availability

The datasets described here are available through the Nanosafety Data Interface and the NanoReg2 database ( Data generated within NANoREG, NanoReg2 and the omics metadata are publicly available under CC BY-NC-SA 4.0 license. The NanoReg2 generated data is also available as SQL (DOI: 10.5281/zenodo.4713745, accessed 23 April 2021). Data that originate from the projects NanoTEST, ENPRA, MARINA and NANOGENOTOX are currently restricted from public use.

Code availability

The eNanoMapper data model is implemented in the open-source chemical substance management software AMBIT ( Machine readability for data retrieval and analysis is facilitated via an open source JavaScript client library ( and a Python client library (


  1. Soeteman-Hernandez, L. G. et al. Safe innovation approach: towards an agile system for dealing with innovations. Mater. Today Commun. 20, 100548 (2019).

    Article  CAS  Google Scholar 

  2. Nymark, P. et al. Toward rigorous materials production: new approach methodologies have extensive potential to improve current safety assessment practices. Small 16, 1904749 (2020).

    Article  CAS  Google Scholar 

  3. Karcher, S. et al. Integration among databases and data sets to support productive nanotechnology: challenges and recommendations. NanoImpact 9, 85–101 (2018).

    Article  Google Scholar 

  4. Powers, C. M. et al. Nanocuration workflows: establishing best practices for identifying, inputting, and sharing data to inform decisions on nanomaterials. Beilstein J. Nanotechnol. 6, 1860–1871 (2015).

    Article  CAS  Google Scholar 

  5. Mahony, C., Currie, R., Daston, G., Kleinstreuer, N. & van de Water, B. Highlight report: ‘Big data in the 3R’s: outlook and recommendations’, a roundtable summary. Arch. Toxicol. 92, 1015–1020 (2018).

    Article  CAS  Google Scholar 

  6. Haase, A. & Klaessig, F. EU–US Roadmap Nanoinformatics 2030 (EU Nanosafety Cluster, 2017);

  7. Marchese Robinson, R. L. et al. How should the completeness and quality of curated nanomaterial data be evaluated? Nanoscale 8, 9919–9943 (2016).

    Article  Google Scholar 

  8. Giusti, A. et al. Nanomaterial grouping: existing approaches and future recommendations. NanoImpact 16, 100182 (2019).

    Article  Google Scholar 

  9. Haase, A. & Lynch, I. Quality in nanosafety—towards reliable nanomaterial safety assessment. NanoImpact 11, 67–68 (2018).

    Article  Google Scholar 

  10. Comandella, D., Gottardo, S., Rio-Echevarria, I. M. & Rauscher, H. Quality of physicochemical data on nanomaterials: an assessment of data completeness and variability. Nanoscale 12, 4695–4708 (2020).

    Article  CAS  Google Scholar 

  11. Tropsha, A., Mills, K. C. & Hickey, A. J. Reproducibility, sharing and progress in nanomaterial databases. Nat. Nanotechnol. 12, 1111–1114 (2017).

    Article  CAS  Google Scholar 

  12. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  Google Scholar 

  13. Hendren, C. O., Powers, C. M., Hoover, M. D. & Harper, S. L. The Nanomaterial Data Curation Initiative: a collaborative approach to assessing, evaluating, and advancing the state of the field. Beilstein J. Nanotechnol. 6, 1752–1762 (2015).

    Article  CAS  Google Scholar 

  14. European Open Science Cloud (EOSC) Strategic Implementation Plan (European Commission, 2019);

  15. A New Industrial Strategy for Europe (European Commission, 2020);

  16. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe (European Commission, 2020);

  17. Chemicals Strategy for Sustainability Towards a Toxic-Free Environment (European Commission, 2021);

  18. Jeliazkova, N. et al. The eNanoMapper database for nanomaterial safety information. Beilstein J. Nanotechnol. 6, 1609–1634 (2015).

    Article  CAS  Google Scholar 

  19. Jeliazkova, N. et al. Linking LRI AMBIT chemoinformatic system with the IUCLID substance database to support read-across of substance endpoint data and category formation. Toxicol. Lett. 258, S114–S115 (2016).

    Article  Google Scholar 

  20. Kochev, N., Jeliazkova, N. & Tsakovska, I. in Big Data in Predictive Toxicology (eds Neagu, D. & Richarz, A.-N.) 69–107 (The Royal Society of Chemistry, 2020).

  21. Hastings, J. et al. eNanoMapper: harnessing ontologies to enable data integration for nanomaterial risk assessment. J. Biomed. Semant. 6, 10–10 (2015).

    Article  Google Scholar 

  22. Totaro, S. et al. The JRC Nanomaterials Repository: a unique facility providing representative test materials for nanoEHS research. Regul. Toxicol. Pharm. 81, 334–340 (2016).

    Article  Google Scholar 

  23. Chomenidis, C. et al. Jaqpot Quattro: a novel computational web platform for modeling and analysis in nanoinformatics. J. Chem. Inf. Model 57, 2161–2172 (2017).

    Article  CAS  Google Scholar 

  24. Mech, A. et al. Insights into possibilities for grouping and read-across for nanomaterials in EU chemicals legislation. Nanotoxicology 13, 119–141 (2019).

    Article  CAS  Google Scholar 

  25. Precupas, A. et al. Thermodynamic parameters at bio–nano Interface and nanomaterial toxicity: a case study on BSA interaction with ZnO, SiO2, and TiO2. Chem. Res. Toxicol. 33, 2054–2071 (2020).

    Article  CAS  Google Scholar 

  26. Berrios, D. C., Beheshti, A. & Costes, S. V. FAIRness and usability for open-access omics data systems. AMIA Annu Symp. Proc. 2018, 232–241 (2018).

    Google Scholar 

  27. Jeliazkova, N. eNanoMapper—parsers for different NM data formats GitHub

  28. Kochev, N. et al. Your spreadsheets can be FAIR: a tool and FAIRification workflow for the eNanoMapper Database. Nanomaterials 10, 1908 (2020).

    Article  CAS  Google Scholar 

  29. Gottardo, S. et al. NANoREG Framework for the Safety Assessment of Nanomaterials (Joint Research Centre, 2017);

  30. Kermanizadeh, A. et al. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health—ENPRA Project—the highlights, limitations, and current and future challenges. J. Toxicol. Environ. Health B 19, 1–28 (2016).

    Article  CAS  Google Scholar 

  31. Bos, P. M. J. et al. The MARINA risk assessment strategy: a flexible strategy for efficient information collection and risk assessment of nanomaterials. Int. J. Environ. Res. Public Health 12, 15007–15021 (2015).

    Article  Google Scholar 

  32. Nesslany, F. NANOGENOTOX European joint action: what could we learn from all these data?. Toxicol. Lett. 229, S35 (2014).

    Article  Google Scholar 

  33. Juillerat-Jeanneret, L. et al. Biological impact assessment of nanomaterial used in nanomedicine. Introduction to the NanoTEST project. Nanotoxicology 9, 5–12 (2015).

    Article  CAS  Google Scholar 

  34. Dusinska, M. et al. Towards an alternative testing strategy for nanomaterials used in nanomedicine: lessons from NanoTEST. Nanotoxicology 9, 118–132 (2015).

    Article  CAS  Google Scholar 

  35. Nano Exposure & Contextual Information Database (NECID) (PEROSCH, accessed 1 March 2020);

  36. Pelzer, J. Structure and functionality of the Nano Exposure and Contextual Information Database (NECID). Gefahrst. Reinhalt. Luft. 73, 302–304 (2013).

    CAS  Google Scholar 

  37. Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 41, D991–D995 (2013).

    Article  CAS  Google Scholar 

  38. Kolesnikov, N. et al. ArrayExpress update—simplifying data submissions. Nucleic Acids Res. 43, D1113–D1116 (2015).

    Article  CAS  Google Scholar 

  39. NANOSOLUTIONS Data Repository (NANOSOLUTIONS, accessed 1 March 2020);

  40. Fernández-Cruz, M. L. et al. Quality evaluation of human and environmental toxicity studies performed with nanomaterials—the GUIDEnano approach. Environ. Sci. Nano 5, 381–397 (2018).

    Article  Google Scholar 

  41. Gottardo, S., Quiros Pesudo, L., Totaro, S., Riego Sintes, J. & Crutzen, H. NANoREG Harmonised Terminology for Environmental Health and Safety Assessment of Nanomaterials (European Commission, 2017);

  42. Krebs, A. et al. Template for the description of cell-based toxicological test methods to allow evaluation and regulatory use of the data. ATLA 36, 682–699 (2019).

    Google Scholar 

  43. Totaro, S., Crutzen, H. & Riego Sintes, J. Data Logging Templates for the Environmental, Health and Safety Assessment of Nanomaterials (Joint Research Centre, 2017);

  44. NANoREG Results Repository (RIVM, 2017);

  45. Wilkinson, M. D. et al. Evaluating FAIR maturity through a scalable, automated, community-governed framework. Sci. Data 6, 174 (2019).

    Article  Google Scholar 

  46. Criteria for FAIR Research Data (Swedish Research Council, 2019);

  47. Collins, S. et al. Turning FAIR into Reality. Final Report and Action Plan from the European Commission Expert Group on FAIR Data (European Commission, 2018);

  48. Willighagen E., Jeliazkova N. NanoCommons—nanomaterial identifiers, basis for European Registry of Nanomaterials (ERM) GitHub

  49. Nymark, P. et al. caLIBRAte D5.3—Document on Quality Criteria for Data (EU Nanosafety Cluster, 2017);

  50. Ammar, A. et al. A semi-automated workflow for FAIR maturity indicators in the life sciences. Nanomaterials 10, 2068 (2020).

    Article  CAS  Google Scholar 

  51. Nymark, P. et al. Grouping of representative nanomaterials is efficiently executed by combining high-throughput-generated biological data with physicochemical data. Toxicol. Lett. 314, abstr. OP02-02 (2019).

    Google Scholar 

  52. Marvel, S. W. et al. ToxPi Graphical User Interface 2.0: dynamic exploration, visualization, and sharing of integrated data models. BMC Bioinf. 19, 80 (2018).

    Article  Google Scholar 

  53. Lamon, L. et al. Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques. Part. Fibre Toxicol. 15, 37 (2018).

    Article  CAS  Google Scholar 

  54. Antikainen, M., Uusitalo, T. & Kivikytö-Reponen, P. Digitalisation as an enabler of circular economy. Procedia CIRP 73, 45–49 (2018).

    Article  Google Scholar 

  55. Falzetti, M., Keiper, W., Igartua, A. & Alliance for Materials (A4M) Consortium. Opinion Paper on Governance and Strategic Programming of Materials Research and Innovation in Horizon Europe (EUMAT, 2019);

  56. Carusi, A. et al. Harvesting the promise of AOPs: an assessment and recommendations. Sci. Total Environ. 628–629, 1542–1556 (2018).

    Article  Google Scholar 

  57. Martens, M. et al. WikiPathways: connecting communities. Nucleic Acids Res. 49, D613–D621 (2021).

    Article  CAS  Google Scholar 

  58. Davis, A. P. et al. Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res. 49, D1138–D1143 (2021).

    Article  CAS  Google Scholar 

  59. Sansone, S.-A. et al. Toward interoperable bioscience data. Nat. Genet. 44, 121–126 (2012).

    Article  CAS  Google Scholar 

  60. Jeliazkova, N., Haase, A., Ritchie, P., Shahzad, R. & Nymark, P. NanoReg2 D1.8—Report on the Defined ISA‐TAB Nano Templates (European Commission, 2016).

  61. Jeliazkova, N. & Jeliazkov, V. AMBIT RESTful web services: an implementation of the OpenTox application programming interface. J. Cheminformatics 3, 18 (2011).

    Article  CAS  Google Scholar 

  62. Shandilya, N. et al. NanoReg2 D3.2—Database/Structural Model and Report Describing the Relationships between Functionality, Physicochemical Properties and Hazard, and Allowing for Integration in the Safe Innovation Approach (2018);

  63. NANoREG D6.05 Database sql (RIVM, accessed 23 November 2019);

  64. Tanasescu, S. et al. in Nanomaterials—Functional Properties and Applications (eds Zaharescu, M. et al.) 85–97 (Publishing House of the Romanian Academy, 2020).

  65. Jeliazkova, N. et al. eNanoMapper D3.4—ISA-Tab Templates for Common Bioselected Set of Assays (European Commission, 2014);

Download references


The work leading to this article has received funding from the European Union’s Horizon 2020 Research and Innovation programme, Grant Agreements no. 646221 (NanoReg2, 2015–2019), no. 814401 (Gov4Nano, 2019–2022) and no. 814425 (RiskGONE 2019–2023). In addition, the European Union’s 7th Framework Programme projects NANoREG (2013–2017, Grant Agreement no. 310584), NanoTEST (2008–2012, no. 201335) and ENPRA (2009–2012, no. 228789), the European Union’s Health Programme Joint Action project NANOGENOTOX (2010–2013, no. 2009 21 01) and the US NIH NCI caNanoLab portal are acknowledged for providing data.

Author information

Authors and Affiliations



N.J. and P.N. conceptualized the study, interpreted the results and drafted the manuscript. A.H. designed and coordinated the work and acquisition of the data. M.D.A., C.A., F.B., A.B., C. Battistelli, C. Bossa, A.B.-P., A.C., I.D.A., M.D., N.E.Y., A.G., P.G.-F., D.G., R.G., M.G., N.R.J., V.J., K.A.J., N.K., P.K., N.M., E.M., A.M., J.M.N., V.P., A.P., T.P., K.R., P.R., I.R.L., E.R.-P., R.S., N.S. and S.T. contributed to the acquisition and analysis of data, as well as the formulation of the methods and results. All the authors approved the final version of the manuscript and agree to being accountable for their own contributions.

Corresponding authors

Correspondence to Nina Jeliazkova or Penny Nymark.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Wojciech Chrzanowski and Iseult Lynch for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1 and 2, Methods and Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeliazkova, N., Apostolova, M.D., Andreoli, C. et al. Towards FAIR nanosafety data. Nat. Nanotechnol. 16, 644–654 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research