Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bioorthogonal catalytic patch

Abstract

Bioorthogonal catalysis mediated by transition metals has inspired a new subfield of artificial chemistry complementary to enzymatic reactions, enabling the selective labelling of biomolecules or in situ synthesis of bioactive agents via non-natural processes. However, the effective deployment of bioorthogonal catalysis in vivo remains challenging, mired by the safety concerns of metal toxicity or complicated procedures to administer catalysts. Here, we describe a bioorthogonal catalytic device comprising a microneedle array patch integrated with Pd nanoparticles deposited on TiO2 nanosheets. This device is robust and removable, and can mediate the local conversion of caged substrates into their active states in high-level living systems. In particular, we show that such a patch can promote the activation of a prodrug at subcutaneous tumour sites, restoring its parent drug’s therapeutic anticancer properties. This in situ applied device potentiates local treatment efficacy and eliminates off-target prodrug activation and dose-dependent side effects in healthy organs or distant tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of the microneedle patch and characterization of the Pd–TiO2 nanofillers.
Fig. 2: Characterization of PT-MNs.
Fig. 3: PT-MN-mediated bioorthogonal catalysis in cellular culture.
Fig. 4: PT-MN-mediated prodrug activation in vitro.
Fig. 5: PT-MN-mediated prodrug activation in vivo for anticancer studies.
Fig. 6: Drug and prodrug concentrations versus time and Pd content in tissues after different treatments.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its Supplementary Information files) or are available from the authors upon request.

References

  1. Li, J. & Chen, P. R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat. Chem. Biol. 12, 129–137 (2016).

    Article  CAS  Google Scholar 

  2. Bai, Y., Chen, J. & Zimmerman, S. C. Designed transition metal catalysts for intracellular organic synthesis. Chem. Soc. Rev. 47, 1811–1821 (2018).

    Article  CAS  Google Scholar 

  3. Li, J. et al. Palladium-triggered deprotection chemistry for protein activation in living cells. Nat. Chem. 6, 352–361 (2014).

    Article  CAS  Google Scholar 

  4. Tonga, G. Y. et al. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat. Chem. 7, 597–603 (2015).

    Article  CAS  Google Scholar 

  5. Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016).

    Article  CAS  Google Scholar 

  6. Sancho-Albero, M. et al. Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis. Nat. Catal. 2, 864–872 (2019).

    Article  CAS  Google Scholar 

  7. Eda, S. et al. Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes. Nat. Catal. 2, 780–792 (2019).

    Article  CAS  Google Scholar 

  8. Coverdale, J. P. C. et al. Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nat. Chem. 10, 347–354 (2018).

    Article  CAS  Google Scholar 

  9. Vidal, C., Tomás-Gamasa, M., Destito, P., López, F. & Mascareñas, J. L. Concurrent and orthogonal gold(i) and ruthenium(ii) catalysis inside living cells. Nat. Commun. 9, 1913 (2018).

    Article  CAS  Google Scholar 

  10. Tomás-Gamasa, M., Martínez-Calvo, M., Couceiro, J. R. & Mascareñas, J. L. Transition metal catalysis in the mitochondria of living cells. Nat. Commun. 7, 12538 (2016).

    Article  Google Scholar 

  11. Wang, X. et al. Copper-triggered bioorthogonal cleavage reactions for reversible protein and cell surface modifications. J. Am. Chem. Soc. 141, 17133–17141 (2019).

    Article  CAS  Google Scholar 

  12. Liu, Y. et al. Catalytically active single-chain polymeric nanoparticles: exploring their functions in complex biological media. J. Am. Chem. Soc. 140, 3423–3433 (2018).

    Article  CAS  Google Scholar 

  13. Streu, C. & Meggers, E. Ruthenium-induced allylcarbamate cleavage in living cells. Angew. Chem. Int. Ed. 45, 5645–5648 (2006).

    Article  CAS  Google Scholar 

  14. Spicer, C. D., Triemer, T. & Davis, B. G. Palladium-mediated cell-surface labeling. J. Am. Chem. Soc. 134, 800–803 (2012).

    Article  CAS  Google Scholar 

  15. Li, J. et al. Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens. J. Am. Chem. Soc. 135, 7330–7338 (2013).

    Article  CAS  Google Scholar 

  16. Völker, T., Dempwolff, F., Graumann, P. L. & Meggers, E. Progress towards bioorthogonal catalysis with organometallic compounds. Angew. Chem. Int. Ed. 53, 10536–10540 (2014).

    Article  CAS  Google Scholar 

  17. Tsubokura, K. et al. In vivo gold complex catalysis within live mice. Angew. Chem. Int. Ed. 56, 3579–3584 (2017).

    Article  CAS  Google Scholar 

  18. Yusop, R. M., Unciti-Broceta, A., Johansson, E. M. V., Sánchez-Martín, R. M. & Bradley, M. Palladium-mediated intracellular chemistry. Nat. Chem. 3, 239–243 (2011).

    Article  CAS  Google Scholar 

  19. Wang, F., Zhang, Y., Du, Z., Ren, J. & Qu, X. Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells. Nat. Commun. 9, 1209 (2018).

    Article  CAS  Google Scholar 

  20. Weiss, J. T. et al. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat. Commun. 5, 3277 (2014).

    Article  CAS  Google Scholar 

  21. Pérez-López, A. M. et al. Gold-triggered uncaging chemistry in living systems. Angew. Chem. Int. Ed. 56, 12548–12552 (2017).

    Article  CAS  Google Scholar 

  22. Clavadetscher, J. et al. Copper catalysis in living systems and in situ drug synthesis. Angew. Chem. Int. Ed. 55, 15662–15666 (2016).

    Article  CAS  Google Scholar 

  23. Bray, T. L. et al. Bright insights into palladium-triggered local chemotherapy. Chem. Sci. 9, 7354–7361 (2018).

    Article  CAS  Google Scholar 

  24. Wang, F. et al. A biocompatible heterogeneous MOF–Cu catalyst for in vivo drug synthesis in targeted subcellular organelles. Angew. Chem. Int. Ed. 58, 6987–6992 (2019).

    Article  CAS  Google Scholar 

  25. Miller, M. A. et al. Nano-palladium is a cellular catalyst for in vivo chemistry. Nat. Commun. 8, 15906 (2017).

    Article  CAS  Google Scholar 

  26. Prausnitz, M. R. & Langer, R. Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008).

    Article  CAS  Google Scholar 

  27. Lee, K. et al. Non-transdermal microneedles for advanced drug delivery. Adv. Drug Deliv. Rev. 165-166, 41–59 (2020).

    Article  CAS  Google Scholar 

  28. Chen, Z., Hu, Q. & Gu, Z. Leveraging engineering of cells for drug delivery. Acc. Chem. Res. 51, 668–677 (2018).

    Article  CAS  Google Scholar 

  29. Li, W. et al. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 3, 220–229 (2019).

    Article  CAS  Google Scholar 

  30. Chen, G. et al. Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proc. Natl Acad. Sci. USA 117, 3687–3692 (2020).

    Article  CAS  Google Scholar 

  31. Yang, S. Y. et al. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat. Commun. 4, 1702 (2013).

    Article  CAS  Google Scholar 

  32. Yu, J. et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl Acad. Sci. USA 112, 8260–8265 (2015).

    Article  CAS  Google Scholar 

  33. Yu, J. et al. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 4, 499–506 (2020).

    Article  CAS  Google Scholar 

  34. Wang, Z. et al. Dual self-regulated delivery of insulin and glucagon by a hybrid patch. Proc. Natl Acad. Sci. USA 117, 29512–29517 (2020).

    Article  CAS  Google Scholar 

  35. Ye, Y. et al. A melanin-mediated cancer immunotherapy patch. Sci. Immunol. 2, eaan5692 (2017).

    Article  Google Scholar 

  36. Sullivan, S. P. et al. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 16, 915–920 (2010).

    Article  CAS  Google Scholar 

  37. DeMuth, P. C., Garcia-Beltran, W. F., Ai-Ling, M. L., Hammond, P. T. & Irvine, D. J. Composite dissolving microneedles for coordinated control of antigen and adjuvant delivery kinetics in transcutaneous vaccination. Adv. Funct. Mater. 23, 161–172 (2013).

    Article  CAS  Google Scholar 

  38. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    Article  CAS  Google Scholar 

  39. Fasolino, A., Los, J. H. & Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007).

    Article  CAS  Google Scholar 

  40. Hassan, C. M. & Peppas, N. A. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33, 2472–2479 (2000).

    Article  CAS  Google Scholar 

  41. Yang, S. et al. Phase-transition microneedle patches for efficient and accurate transdermal delivery of insulin. Adv. Funct. Mater. 25, 4633–4641 (2015).

    Article  CAS  Google Scholar 

  42. Samant, P. P. & Prausnitz, M. R. Mechanisms of sampling interstitial fluid from skin using a microneedle patch. Proc. Natl Acad. Sci. USA 115, 4583–4588 (2018).

    Article  CAS  Google Scholar 

  43. Rautio, J., Meanwell, N. A., Di, L. & Hageman, M. J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 17, 559–587 (2018).

    Article  CAS  Google Scholar 

  44. Nitiss, J. L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 9, 338–350 (2009).

    Article  CAS  Google Scholar 

  45. Qu, X. & Chaires, J. B. in Methods in Enzymology Vol. 321 353–369 (Academic Press, 2000).

  46. Melber, C., Keller, D. & Mangelsdorf, I. Environmental Health Criteria 226: Palladium (World Health Organization, 2002).

  47. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

    Article  CAS  Google Scholar 

  48. Li, Y., Boone, E. & El-Sayed, M. A. Size effects of PVP−Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir 18, 4921–4925 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the start-up packages of the University of North Carolina and North Carolina State University (Z.G.), the University of California at Los Angeles (Z.G.), Zhejiang University (Z.G.) and Fuzhou University (0041-510889, Z.C.); a Sloan Research Fellowship of the Alfred P. Sloan Foundation (Z.G.); and the Jonsson Comprehensive Cancer Center at the University of California at Los Angeles (Z.G.). Part of this work was performed at the Analytical Instrumentation Facility at North Carolina State University, which is supported by the state of North Carolina and the National Science Foundation (grant no. 1542015). The Analytical Instrumentation Facility is a member of the North Carolina Research Triangle Nanotechnology Network, a site in the National Nanotechnology Coordinated Infrastructure. We thank L. Huang from the University of North Carolina at Chapel Hill and Z. Li from Hebei University for providing bioluminescent B16-F10 cells and B16-RFP cells, respectively. The XANES and EXAFS studies of this work used resources of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy Office of Science by Argonne National Laboratory, and was supported by the US Department of Energy under contract no. DE-AC02-06CH11357 and by the Canadian Light Source and its funding partners.

Author information

Authors and Affiliations

Authors

Contributions

Z.C. and Z.G. designed the project. Z.C., H.L., Y.B., Z.W., G.C., X.Z., Y.M., D.W., J.W., G.W., C.-J.S., J.F. and Y.Z. performed the experiments. Z.C., H.L., Y.B., G.C., Y.M., D.W., J.W., G.W. and Z.G. analysed the data. Z.C., H.L., Y.B., Z.W., Y.M., P.A., S.L. and Z.G. wrote the paper.

Corresponding author

Correspondence to Zhen Gu.

Ethics declarations

Competing interests

Z.G. and Z.C. have applied for patents related to this study. Z.G. is a scientific cofounder of ZenCapsule and ZCapsule. The other authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, H., Bian, Y. et al. Bioorthogonal catalytic patch. Nat. Nanotechnol. 16, 933–941 (2021). https://doi.org/10.1038/s41565-021-00910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00910-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research