Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices

Abstract

The development of high-performance memory devices has played a key role in the innovation of modern electronics. Non-volatile memory devices have manifested high capacity and mechanical reliability as a mainstream technology; however, their performance has been hampered by low extinction ratio and slow operational speed. Despite substantial efforts to improve these characteristics, typical write times of hundreds of micro- or milliseconds remain a few orders of magnitude longer than that of their volatile counterparts. Here we demonstrate non-volatile, floating-gate memory devices based on van der Waals heterostructures with atomically sharp interfaces between different functional elements, achieving ultrahigh-speed programming/erasing operations in the range of nanoseconds with extinction ratio up to 1010. This enhanced performance enables new device capabilities such as multi-bit storage, thus opening up applications in the realm of modern nanoelectronics and offering future fabrication guidelines for device scale up.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Atomically sharp interfaces embedded in non-volatile memory device with floating-gate configuration built upon van der Waals heterostructures.
Fig. 2: Two-dimensional InSe-based floating-gate memory device with large memory window.
Fig. 3: Programming and erasing non-volatile InSe floating-gate memory devices with large extinction ratio and robust performance.
Fig. 4: Ultrafast operation of memory cell and enabling the multi-bit storage paradigm.

Data availability

Source data are provided with this paper. All relevant data are available from the corresponding authors upon reasonable request.

References

  1. 1.

    International Roadmap for Devices and Systems (IRDS) https://irds.ieee.org/ (2017).

  2. 2.

    Hwang, C. S. Prospective of semiconductor memory devices: from memory system to materials. Adv. Electron. Mater. 1, 1400056 (2015).

    Article  CAS  Google Scholar 

  3. 3.

    Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Feng, W., Zheng, W., Cao, W. & Hu, P. Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv. Mater. 26, 6587–6593 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Wu, L. et al. InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics. Nano Res. 13, 1127–1132 (2020).

    CAS  Article  Google Scholar 

  9. 9.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Choi, M. S. et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013).

    Article  CAS  Google Scholar 

  17. 17.

    Li, D. et al. Nonvolatile floating-gate memories based on stacked black phosphorus–boron nitride–MoS2 heterostructures. Adv. Funct. Mater. 25, 7360–7365 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Wang, S. et al. New floating gate memory with excellent retention characteristics. Adv. Electron. Mater. 5, 1800726 (2019).

    Article  CAS  Google Scholar 

  19. 19.

    Hong, A. J. et al. Graphene flash memory. ACS Nano 5, 7812–7817 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    Lee, S. et al. Impact of gate work-function on memory characteristics in Al2O3/HfOx/Al2O3/graphene charge-trap memory devices. Appl. Phys. Lett. 100, 023109 (2012).

    Article  CAS  Google Scholar 

  21. 21.

    Chen, M. et al. Multibit data storage states formed in plasma-treated MoS2 transistors. ACS Nano 8, 4023–4032 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Wang, J. et al. Floating gate memory‐based monolayer MoS2 transistor with metal nanocrystals embedded in the gate dielectrics. Small 11, 208–213 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Zhang, E. et al. Tunable charge-trap memory based on few-layer MoS2. ACS Nano 9, 612–619 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Feng, Q., Yan, F., Luo, W. & Wang, K. Charge trap memory based on few-layer black phosphorus. Nanoscale 8, 2686–2692 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Lee, D. et al. Black phosphorus nonvolatile transistor memory. Nanoscale 8, 9107–9112 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Liu, C. et al. Eliminating overerase behavior by designing energy band in high‐speed charge‐trap memory based on WSe2. Small 13, 1604128 (2017).

    Article  CAS  Google Scholar 

  27. 27.

    Wang, P. F. et al. A semi-floating gate transistor for low-voltage ultrafast memory and sensing operation. Science 341, 640–643 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Liu, C. et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 13, 404–410 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    Kahng, D. & Sze, S. M. A floating gate and its application to memory devices. Bell Syst. Tech. J. 46, 1288–1295 (1967).

    Article  Google Scholar 

  30. 30.

    Lee, J.-D., Hur, S.-H. & Choi, J.-D. Effects of floating-gate interference on NAND flash memory cell operation. IEEE Electron Device Lett. 23, 264–266 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    Misra, A. et al. Multilayer graphene as charge storage layer in floating gate flash memory. In 2012 4th IEEE International Memory Workshop 1–4 (2012).

  32. 32.

    Vu, Q. A. et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Cho, T. et al. A dual-mode NAND flash memory: 1-Gb multilevel and high-performance 512-Mb single-level modes. IEEE J. Solid-State Circuits 36, 1700–1706 (2001).

    Article  Google Scholar 

  35. 35.

    Xiang, D. et al. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun. 9, 2966 (2018).

    Article  CAS  Google Scholar 

  36. 36.

    Tran, M. D. et al. Two-terminal multibit optical memory via van der Waals heterostructure. Adv. Mater. 31, 1807075 (2019).

    Article  CAS  Google Scholar 

  37. 37.

    Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Article  CAS  Google Scholar 

  38. 38.

    Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    CAS  Article  Google Scholar 

  39. 39.

    Pan, Y. et al. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 21, 2777–2780 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    Shi, Z. et al. Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates. Nat. Commun. 11, 849 (2020).

    CAS  Article  Google Scholar 

  41. 41.

    Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Liu, L., Ding, Y., Li, J., Liu, C. & Zhou, P. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Preprint at https://arxiv.org/abs/2009.01581 (2020).

  43. 43.

    Lee, G.-H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    CAS  Article  Google Scholar 

  45. 45.

    Wang, G. et al. Introduction of interfacial charges to black phosphorus for a family of planar devices. Nano Lett. 16, 6870–6878 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Y.-Y. Zhang, S. Du, G. Qian and Z. Zhu for helpful discussions, and H. Yang, J. Li, C. Gu and Q. Huan for assistance in device fabrication and measurement. This work was supported by the National Key Research & Development Projects of China (grant nos. 2016YFA0202300 and 2018FYA0305800), National Natural Science Foundation of China (grant no. 61888102), Strategic Priority Research Program of Chinese Academy of Sciences (CAS; grant nos. XDB30000000 and XDB28000000), Youth Innovation Promotion Association of CAS (Y201902) and Beijing Outstanding Young Scientist Program (BJJWZYJH01201914430039). M.O. acknowledges support from ONR (N000141712885) and NSF (DMR1608720). S.J.P. acknowledges support from the Ministry of Education, Singapore, under a Tier 2 grant (no. MOE2017-T2-2-139). A portion of the research was performed in the CAS Key Laboratory of Vacuum Physics.

Author information

Affiliations

Authors

Contributions

H.-J.G. supervised the overall research. L.B., M.O. and H.-J.G. designed the experiments. L.W., A.W., J.Y. and L.B. fabricated the devices and carried out the electrical measurements. J.S., S.J.P. and W.Z. performed the STEM measurements. A.W. constructed the home-made electric circuit with ultrashort voltage pulse signals with FWHM of 21 ns. L.W., L.B., A.W., J.S., J.Y., W.Z., M.O., S.T.P. and H.-J.G. analysed the data. L.W., L.B., J.S., W.Z., S.J.P., S.T.P., M.O. and H.-J.G. wrote the paper. All the authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Lihong Bao, Min Ouyang or Hong-Jun Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Floating-gate memory devices based on 2D materials.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Notes 1–5 and refs. 1–7.

Source data

Source Data Fig. 2

Contains bare data for images.

Source Data Fig. 3

Contains bare data for images.

Source Data Fig. 4

Contains bare data for images.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Wang, A., Shi, J. et al. Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nat. Nanotechnol. 16, 882–887 (2021). https://doi.org/10.1038/s41565-021-00904-5

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research