Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Designing cryo-enzymatic reactions in subzero liquid water by lipidic mesophase nanoconfinement

Abstract

Cryo-enzymology provides the possibility to develop unconventional biological reactions and detect intermediates in ultrafast enzymatic catalysis processes, but also illuminates the understanding of life principles in extremely cold environments. The scarcity of biological or biomimetic host systems that provide liquid water at subzero temperatures inhibits the prosperity of cryo-enzymology. Here we introduce cryo-enzymatic reactions in subzero water nanoconfined within lipid mesophases formed by conventional lipids. We show that the enzymatic reactions that ensue outperform the homologue catalytic processes run at standard temperatures. We use phytantriol-based lipidic mesophases (LMPs), within which water remains in the liquid state down to −120 °C, and combine crystallization and dynamic studies of the confined water to provide a fundamental understanding of the physical status of water at subzero temperatures, which sets the stage for cryo-enzymatic reactions in these environments. In the model horseradish peroxidase oxidization, the cation free-radical product is stabilized in LMPs at −20 °C, in contrast to the fast-consuming reactions at temperatures above 0 °C. Furthermore, the LMP system also supports the cascade reaction and lipase reaction at subzero temperatures, at which enzymatic reactions with both hydrophilic and hydrophobic substrates are successfully carried out. Our designed LMP system opens access to the nature of confined water in the biomimetic environment and provides a platform for low-temperature biomacromolecule reconstitution and the cryogenic control of enzymatic reactions in bionanotechnology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Low temperature stable LMPs.
Fig. 2: Thermal behaviour of water in LMPs.
Fig. 3: Dynamics of water and phytantriol in LMPs.
Fig. 4: State of nanoconfined water.
Fig. 5: Cryo-enzymatic reactions confined in LMP.

Data availability

All data generated and analysed during this study are included in the article and its Supplementary Information.

References

  1. 1.

    Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    Clarke, A. The thermal limits to life on Earth. Int. J. Astrobiol. 13, 141–154 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    Gallat, F. X. et al. A polymer surfactant corona dynamically replaces water in solvent-free protein liquids and ensures macromolecular flexibility and activity. J. Am. Chem. Soc. 134, 13168–13171 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Franks, F. Biophysics and Biochemistry at Low Temperatures (Cambridge Univ. Press, 1985).

  5. 5.

    Lazaridis, T. & Karplus, M. Effective energy function for proteins in solution. Proteins 35, 133–152 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    Laage, D., Elsaesser, T. & Hynes, J. T. Water dynamics in the hydration shells of biomolecules. Chem. Rev. 117, 10694–10725 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Bellissent-Funel, M.-C. et al. Water determines the structure and dynamics of proteins. Chem. Rev. 116, 7673–7697 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Douzou, P., Sireix, R. & Travers, F. Temporal resolution of individual steps in an enzymic reaction at low temperature. Proc. Natl Acad. Sci. USA 66, 787–792 (1970).

    CAS  Article  Google Scholar 

  9. 9.

    Terefe, N. S., Van Loey, A. & Hendrickx, M. Modelling the kinetics of enzyme-catalysed reactions in frozen systems: the alkaline phosphatase catalysed hydrolysis of di-sodium-p-nitrophenyl phosphate. Food Sci. Technol. Int 5, 335–344 (2004).

    Google Scholar 

  10. 10.

    Johal, A. R. et al. Sequence-dependent effects of cryoprotectants on the active sites of the human ABO (H) blood group A and B glycosyltransferases. Acta Crystallogr. D 68, 268–276 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Dai, F., Huang, Y., Zhou, M. & Zhang, G. The influence of cold acclimation on antioxidative enzymes and antioxidants in sensitive and tolerant barley cultivars. Biol. Plant. 53, 257–262 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Jönsson, Å., Adlercreutz, P. & Mattiasson, B. Effects of subzero temperatures on the kinetics of protease catalyzed dipeptide synthesis in organic media. Biotechnol. Bioeng. 46, 429–436 (1995).

    Article  Google Scholar 

  13. 13.

    Douzou, P., Keh, E. & Balny, C. Cryoenzymology in aqueous media: micellar solubilized water clusters. Proc. Natl Acad. Sci. USA 76, 681–684 (1979).

    CAS  Article  Google Scholar 

  14. 14.

    Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998).

    CAS  Article  Google Scholar 

  15. 15.

    Angell, C. Supercooled water. Annu Rev. Phys. Chem. 34, 593–630 (1983).

    CAS  Article  Google Scholar 

  16. 16.

    Levinger, N. E. Water in confinement. Science 298, 1722–1723 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    Yao, Y. et al. Homogeneous nucleation of ice confined in hollow silica spheres. J. Phys. Chem. B 121, 306–313 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Gallo, P., Rovere, M. & Spohr, E. Supercooled confined water and the mode coupling crossover temperature. Phys. Rev. Lett. 85, 4317–4320 (2000).

    CAS  Article  Google Scholar 

  19. 19.

    Suzuki, Y. et al. Homogeneous nucleation of predominantly cubic ice confined in nanoporous alumina. Nano Lett. 15, 1987–1992 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Schreiber, A., Ketelsen, I. & Findenegg, G. H. Melting and freezing of water in ordered mesoporous silica materials. Phys. Chem. Chem. Phys. 3, 1185–1195 (2001).

    CAS  Article  Google Scholar 

  21. 21.

    Findenegg, G. H., Jähnert, S., Akcakayiran, D. & Schreiber, A. Freezing and melting of water confined in silica nanopores. Chemphyschem 9, 2651–2659 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    Yao, Y. et al. Crystallization and dynamics of water confined in model mesoporous silica particles: two ice nuclei and two fractions of water. Langmuir 35, 5890–5901 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Erickson, H. P. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online 11, 32–51 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    Hande, V. R. & Chakrabarty, S. Exploration of the presence of bulk-like water in AOT reverse micelles and water-in-oil nanodroplets: the role of charged interfaces, confinement size and properties of water. Phys. Chem. Chem. Phys. 18, 21767–21779 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Venables, D. S., Huang, K. & Schmuttenmaer, C. A. Effect of reverse micelle size on the librational band of confined water and methanol. J. Phys. Chem. B 105, 9132–9138 (2001).

    CAS  Article  Google Scholar 

  26. 26.

    De, T. K. & Maitra, A. Solution behaviour of Aerosol OT in non-polar solvents. Adv. Colloid Interface Sci. 59, 95–193 (1995).

    CAS  Article  Google Scholar 

  27. 27.

    van’t Hag, L., Gras, S. L., Conn, C. E. & Drummond, C. J. Lyotropic liquid crystal engineering moving beyond binary compositional —ordered nanostructured amphiphile self-assembly materials by design. Chem. Soc. Rev. 46, 2705–2731 (2017).

    Article  Google Scholar 

  28. 28.

    Mezzenga, R. in Self-Assembled Supramolecular Architectures: Lyotropic Liquid Crystals (eds Garti, N., Somasundaran, P & Mezzenga, R.) 1–20 (Wiley, 2012).

  29. 29.

    Vallooran, J. J. et al. Lipidic cubic phases as a versatile platform for the rapid detection of biomarkers, viruses, bacteria, and parasites. Adv. Funct. Mater. 26, 181–190 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Zhou, T. et al. Efficient asymmetric synthesis of carbohydrates by aldolase nano-confined in lipidic cubic mesophases. ACS Catal. 8, 5810–5815 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Zhou, T., Vallooran, J. J. & Mezzenga, R. Supramolecular chirality and crystallization from biocatalytic self-assembly in lipidic cubic mesophases. Nanoscale 11, 5891–5895 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    Sun, W., Vallooran, J. J., Zabara, A. & Mezzenga, R. Controlling enzymatic activity and kinetics in swollen mesophases by physical nano-confinement. Nanoscale 6, 6853–6859 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    Sun, W., Vallooran, J. J. & Mezzenga, R. Enzyme kinetics in liquid crystalline mesophases: size matters, but also topology. Langmuir 31, 4558–4565 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Manni, L. S. et al. Soft biomimetic nanoconfinement promotes amorphous water over ice. Nat. Nanotechnol. 14, 609–615 (2019).

    Article  CAS  Google Scholar 

  35. 35.

    Lane, L. B. Freezing points of glycerol and its aqueous solutions. Ind. Eng. Chem. Res. 17, 924–924 (1925).

    CAS  Article  Google Scholar 

  36. 36.

    Murata, K. & Tanaka, H. Liquid–liquid transition without macroscopic phase separation in a water–glycerol mixture. Nat. Mater. 11, 436–443 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    Popov, I., Greenbaum, A., Sokolov, A. P. & Feldman, Y. The puzzling first-order phase transition in water–glycerol mixtures. Phys. Chem. Chem. Phys. 17, 18063–18071 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Gainaru, C. et al. Nuclear-magnetic-resonance measurements reveal the origin of the Debye process in monohydroxy alcohols. Phys. Rev. Lett. 105, 258303 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Vallooran, J. J., Assenza, S. & Mezzenga, R. Spatiotemporal control of enzyme‐induced crystallization under lyotropic liquid crystal nanoconfinement. Angew. Chem. Int. Ed. 58, 7289–7293 (2019).

    CAS  Article  Google Scholar 

  40. 40.

    Sauer, D. et al. Dynamics of water–alcohol mixtures: insights from nuclear magnetic resonance, broadband dielectric spectroscopy, and triplet solvation dynamics. J. Chem. Phys. 140, 114503 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    Cerveny, S., Mallamace, F., Swenson, J., Vogel, M. & Xu, L. Confined water as model of supercooled water. Chem. Rev. 116, 7608–7625 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Johari, G. & Whalley, E. The dielectric properties of ice Ih in the range 272–133 K. J. Chem. Phys. 75, 1333–1340 (1981).

    CAS  Article  Google Scholar 

  43. 43.

    Popov, I., Puzenko, A., Khamzin, A. & Feldman, Y. The dynamic crossover in dielectric relaxation behavior of ice Ih. Phys. Chem. Chem. Phys. 17, 1489–1497 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Shinyashiki, N. et al. Glass transitions in aqueous solutions of protein (bovine serum albumin). J. Phys. Chem. B 113, 14448–14456 (2009).

    CAS  Article  Google Scholar 

  45. 45.

    Moore, E. B., De La Llave, E., Welke, K., Scherlis, D. A. & Molinero, V. Freezing, melting and structure of ice in a hydrophilic nanopore. Phys. Chem. Chem. Phys. 12, 4124–4134 (2010).

    CAS  Article  Google Scholar 

  46. 46.

    Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693–703 (1973).

    CAS  Article  Google Scholar 

  47. 47.

    Josephy, P. D., Eling, T. & Mason, R. P. The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J. Biol. Chem. 257, 3669–3675 (1982).

    CAS  Article  Google Scholar 

  48. 48.

    Kremer, F. & Schönhals, A. Broadband Dielectric Spectroscopy (Springer Science & Business Media, 2002).

Download references

Acknowledgements

We acknowledge M. Strach at the Chalmers Materials Analysis Laboratory (CMAL) for the performance of the in situ low-temperature X-ray measurements. We thank V. Lutz Bueno for the coordination of the X-ray experiments. We thank H.-J. Butt, A. Best, C.-H. Tu and P. Räder from the Max-Planck Institute for Polymer Research for the excellent support in the DSC and BDS experiments. R.M. acknowledges support from SNF grants 200020_178997. T.Z. acknowledges the China Scholarship Council for financial support.

Author information

Affiliations

Authors

Contributions

R.M., Y.Y. and T.Z. conceived the idea, planned the experiments, wrote the paper and coordinated the overall research project. Y.Y. and T.Z. discovered the LMP at subzero temperatures. Y.Y. developed methods to study the crystallization and dynamics of water, performed the DSC and BDS experiments, analysed and interpreted the DSC and BDS data and coordinated the WAXS experiments. T.Z. produced the LMPs, performed the SAXS experiments, designed and performed the cryo-enzymatic reactions and performed the ultraviolet experiments. G.F. contributed to the analysis and interpretation of the BDS data. R.F. and U.G. coordinated the BDS experiments. All the authors discussed the results, provided comments and revised the manuscript.

Corresponding author

Correspondence to Raffaele Mezzenga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Renata Bilewicz, Yi-Tao Long and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, and description on the fitting procedure of dielectric spectra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Zhou, T., Färber, R. et al. Designing cryo-enzymatic reactions in subzero liquid water by lipidic mesophase nanoconfinement. Nat. Nanotechnol. (2021). https://doi.org/10.1038/s41565-021-00893-5

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research