Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrical and thermal generation of spin currents by magnetic bilayer graphene


Ultracompact spintronic devices greatly benefit from the implementation of two-dimensional materials that provide large spin polarization of charge current together with long-distance transfer of spin information. Here spin-transport measurements in bilayer graphene evidence a strong spin–charge coupling due to a large induced exchange interaction by the proximity of an interlayer antiferromagnet (CrSBr). This results in the direct detection of the spin polarization of conductivity (up to 14%) and a spin-dependent Seebeck effect in the magnetic graphene. The efficient electrical and thermal spin–current generation is the most technologically relevant aspect of magnetism in graphene, controlled here by the antiferromagnetic dynamics of CrSBr. The high sensitivity of spin transport in graphene to the magnetization of the outermost layer of the adjacent antiferromagnet, furthermore, enables the read-out of a single magnetic sublattice. The combination of gate-tunable spin-dependent conductivity and Seebeck coefficient with long-distance spin transport in a single two-dimensional material promises ultrathin magnetic memory and sensory devices based on magnetic graphene.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Induced magnetism in bilayer graphene by the proximity of CrSBr.
Fig. 2: Spin transport in bilayer graphene with spin-polarized conductivity.
Fig. 3: SDSE in the magnetized bilayer graphene.
Fig. 4: Temperature dependence of the spin signal.
Fig. 5: AHE in a bilayer graphene/CrSBr vdW heterostructure.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information. Any further related information can be provided by the corresponding author upon reasonable request. Source data are provided with this paper.


  1. 1.

    Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    CAS  Article  Google Scholar 

  2. 2.

    Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    CAS  Article  Google Scholar 

  3. 3.

    Slonczewski, J. C. et al. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    Myers, E., Ralph, D., Katine, J., Louie, R. & Buhrman, R. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    Žutić, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  6. 6.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & Van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    Abergel, D., Apalkov, V., Berashevich, J., Ziegler, K. & Chakraborty, T. Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261–482 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Gmitra, M. & Fabian, J. Graphene on transition-metal dichalcogenides: a platform for proximity spin–orbit physics and optospintronics. Phys. Rev. B 92, 155403 (2015).

    Article  CAS  Google Scholar 

  13. 13.

    Garcia, J. H., Vila, M., Cummings, A. W. & Roche, S. Spin transport in graphene/transition metal dichalcogenide heterostructures. Chem. Soc. Rev. 47, 3359–3379 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Haugen, H., Huertas-Hernando, D. & Brataas, A. Spin transport in proximity-induced ferromagnetic graphene. Phys. Rev. B 77, 115406 (2008).

    Article  CAS  Google Scholar 

  15. 15.

    Yang, H.-X. et al. Proximity effects induced in graphene by magnetic insulators: first-principles calculations on spin filtering and exchange-splitting gaps. Phys. Rev. Lett. 110, 046603 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Zollner, K., Gmitra, M., Frank, T. & Fabian, J. Theory of proximity-induced exchange coupling in graphene on hBN/(Co, Ni). Phys. Rev. B 94, 155441 (2016).

    Article  CAS  Google Scholar 

  17. 17.

    Asshoff, P. et al. Magnetoresistance of vertical co-graphene–NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene. 2D Mater. 4, 031004 (2017).

    Article  CAS  Google Scholar 

  18. 18.

    Behera, S. K., Bora, M., Chowdhury, S. S. P. & Deb, P. Proximity effects in graphene and ferromagnetic CrBr3 van der Waals heterostructures. Phys. Chem. Chem. Phys. 21, 25788–25796 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Wei, P. et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 15, 711–716 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Wu, Y.-F. et al. Magnetic proximity effect in graphene coupled to a BiFeO3 nanoplate. Phys. Rev. B 95, 195426 (2017).

    Article  Google Scholar 

  21. 21.

    Tang, C., Zhang, Z., Lai, S., Tan, Q. & Gao, W.-b. Magnetic proximity effect in graphene/CrBr3 van der Waals heterostructures. Adv. Mater. 32, 1908498 (2020).

    CAS  Article  Google Scholar 

  22. 22.

    Wang, Z., Tang, C., Sachs, R., Barlas, Y. & Shi, J. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys. Rev. Lett. 114, 016603 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Tang, C. et al. Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure. APL Mater. 6, 026401 (2018).

    Article  CAS  Google Scholar 

  24. 24.

    Leutenantsmeyer, J. C., Kaverzin, A. A., Wojtaszek, M. & Van Wees, B. J. Proximity induced room temperature ferromagnetism in graphene probed with spin currents. 2D Mater. 4, 014001 (2016).

    Article  CAS  Google Scholar 

  25. 25.

    Singh, S. et al. Strong modulation of spin currents in bilayer graphene by static and fluctuating proximity exchange fields. Phys. Rev. Lett. 118, 187201 (2017).

    Article  Google Scholar 

  26. 26.

    Karpiak, B. et al. Magnetic proximity in a van der Waals heterostructure of magnetic insulator and graphene. 2D Mater. 7, 015026 (2019).

    Article  CAS  Google Scholar 

  27. 27.

    Cummings, A. W. Probing magnetism via spin dynamics in graphene/2D-ferromagnet heterostructures. J. Phys. Mater. 2, 045007 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5, 266–270 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Michetti, P., Recher, P. & Iannaccone, G. Electric field control of spin rotation in bilayer graphene. Nano Lett. 10, 4463–4469 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    Michetti, P. & Recher, P. Spintronics devices from bilayer graphene in contact to ferromagnetic insulators. Phys. Rev. B 84, 125438 (2011).

    Article  CAS  Google Scholar 

  31. 31.

    Zollner, K., Gmitra, M. & Fabian, J. Electrically tunable exchange splitting in bilayer graphene on monolayer Cr2X2Te6 with X = Ge, Si, and Sn. New J. Phys. 20, 073007 (2018).

    Article  CAS  Google Scholar 

  32. 32.

    Cardoso, C., Soriano, D., García-Martínez, N. & Fernández-Rossier, J. Van der Waals spin valves. Phys. Rev. Lett. 121, 067701 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Gibertini, M., Koperski, M., Morpurgo, A. & Novoselov, K. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    CAS  Article  Google Scholar 

  34. 34.

    Göser, O., Paul, W. & Kahle, H. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 92, 129–136 (1990).

    Article  Google Scholar 

  35. 35.

    Wang, H., Qi, J. & Qian, X. Electrically tunable high Curie temperature two-dimensional ferromagnetism in van der Waals layered crystals. Appl. Phys. Lett. 117, 083102 (2020).

    CAS  Article  Google Scholar 

  36. 36.

    Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020).

    CAS  Article  Google Scholar 

  37. 37.

    Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Preprint at (2020).

  38. 38.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Dash, S. P., Sharma, S., Patel, R. S., de Jong, M. P. & Jansen, R. Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    CAS  Article  Google Scholar 

  42. 42.

    Rameshti, B. Z. & Moghaddam, A. G. Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene. Phys. Rev. B 91, 155407 (2015).

    Article  CAS  Google Scholar 

  43. 43.

    Villamor, E., Isasa, M., Hueso, L. E. & Casanova, F. Temperature dependence of spin polarization in ferromagnetic metals using lateral spin valves. Phys. Rev. B 88, 184411 (2013).

    Article  CAS  Google Scholar 

  44. 44.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  45. 45.

    Song, G., Ranjbar, M. & Kiehl, R. A. Operation of graphene magnetic field sensors near the charge neutrality point. Commun. Phys. 2, 95 (2019).

    Article  CAS  Google Scholar 

  46. 46.

    Mendes, J. et al. Spin-current to charge-current conversion and magnetoresistance in a hybrid structure of graphene and yttrium iron garnet. Phys. Rev. Lett. 115, 226601 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. nature 438, 201–204 (2005).

    CAS  Article  Google Scholar 

  48. 48.

    Tse, W.-K., Qiao, Z., Yao, Y., MacDonald, A. H. & Niu, Q. Quantum anomalous Hall effect in single-layer and bilayer graphene. Phys. Rev. B 83, 155447 (2011).

    Article  CAS  Google Scholar 

  49. 49.

    Zhou, B., Chen, X., Wang, H., Ding, K.-H. & Zhou, G. Magnetotransport and current-induced spin transfer torque in a ferromagnetically contacted graphene. J. Phys. Condens. Matter 22, 445302 (2010).

    Article  CAS  Google Scholar 

  50. 50.

    Chappert, C., Fert, A. & Van Dau, F. N. Nanoscience and Technology: A Collection of Reviews from Nature Journals (ed. Rodgers, P.) 147–157 (World Scientific, 2010).

  51. 51.

    Novoselov, K. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

  52. 52.

    Li, H. et al. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7, 10344–10353 (2013).

    CAS  Article  Google Scholar 

  53. 53.

    Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    Article  CAS  Google Scholar 

  54. 54.

    Beck, J. Über chalkogenidhalogenide des chroms synthese, kristallstruktur und magnetismus von chromsulfidbromid, crsbr. Z. Anorg. Allg. Chem. 585, 157–167 (1990).

    CAS  Article  Google Scholar 

Download references


We thank M. H. D. Guimarães and E. J. Telford for discussions and T. J. Schouten, H. Adema, H. de Vries, A. Joshua and J. G. Holstein for technical support. This research received funding from the Dutch Foundation for Fundamental Research on Matter (FOM) as a part of the Netherlands Organisation for Scientific Research (NWO), FLAG-ERA (15FLAG01-2), the European Union’s Horizon 2020 research and innovation programme under grant agreements no. 785219 and no. 881603 (Graphene Flagship Core 2 and Core 3), NanoNed, the Zernike Institute for Advanced Materials and the Spinoza Prize awarded in 2016 to B.J.v.W. by NWO. Synthesis, structural characterization and magnetic measurements are supported as part of Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0019443. A.H.D. is supported by the NSF graduate research fellowship program (DGE 16-44869).

Author information




T.S.G. and B.J.v.W. conceived the project. T.S.G. fabricated the devices and performed the main experiments and data analysis with the help of A.A.K. and supervision of B.J.v.W. A.A.K. performed the analytical modelling. T.S.G. and D.K.d.W. performed the measurements and data analysis of the AHE. A.H.D. and X.R. synthesized the CrSBr crystals and performed the SQUID magnetometry and analysis. T.S.G. wrote the manuscript and Supplementary Information with help from A.A.K. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Talieh S. Ghiasi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–20.

Source data

Source Data Fig. 1

Numerical data used to generate graphs in the figures.

Source Data Fig. 2

Numerical data used to generate graphs in the figures.

Source Data Fig. 3

Numerical data used to generate graphs in the figures.

Source Data Fig. 4

Numerical data used to generate graphs in the figures.

Source Data Fig. 5

Numerical data used to generate graphs in the figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, T.S., Kaverzin, A.A., Dismukes, A.H. et al. Electrical and thermal generation of spin currents by magnetic bilayer graphene. Nat. Nanotechnol. 16, 788–794 (2021).

Download citation


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research