Abstract
Ultracompact spintronic devices greatly benefit from the implementation of two-dimensional materials that provide large spin polarization of charge current together with long-distance transfer of spin information. Here spin-transport measurements in bilayer graphene evidence a strong spin–charge coupling due to a large induced exchange interaction by the proximity of an interlayer antiferromagnet (CrSBr). This results in the direct detection of the spin polarization of conductivity (up to 14%) and a spin-dependent Seebeck effect in the magnetic graphene. The efficient electrical and thermal spin–current generation is the most technologically relevant aspect of magnetism in graphene, controlled here by the antiferromagnetic dynamics of CrSBr. The high sensitivity of spin transport in graphene to the magnetization of the outermost layer of the adjacent antiferromagnet, furthermore, enables the read-out of a single magnetic sublattice. The combination of gate-tunable spin-dependent conductivity and Seebeck coefficient with long-distance spin transport in a single two-dimensional material promises ultrathin magnetic memory and sensory devices based on magnetic graphene.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping
Nature Communications Open Access 28 June 2023
-
Electrically tunable lateral spin-valve transistor based on bilayer CrI3
npj 2D Materials and Applications Open Access 26 June 2023
-
Boosting proximity spin–orbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure
npj 2D Materials and Applications Open Access 30 September 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information. Any further related information can be provided by the corresponding author upon reasonable request. Source data are provided with this paper.
References
Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).
Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).
Slonczewski, J. C. et al. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).
Myers, E., Ralph, D., Katine, J., Louie, R. & Buhrman, R. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).
Žutić, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).
Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & Van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).
Abergel, D., Apalkov, V., Berashevich, J., Ziegler, K. & Chakraborty, T. Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261–482 (2010).
Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014).
Gmitra, M. & Fabian, J. Graphene on transition-metal dichalcogenides: a platform for proximity spin–orbit physics and optospintronics. Phys. Rev. B 92, 155403 (2015).
Garcia, J. H., Vila, M., Cummings, A. W. & Roche, S. Spin transport in graphene/transition metal dichalcogenide heterostructures. Chem. Soc. Rev. 47, 3359–3379 (2018).
Haugen, H., Huertas-Hernando, D. & Brataas, A. Spin transport in proximity-induced ferromagnetic graphene. Phys. Rev. B 77, 115406 (2008).
Yang, H.-X. et al. Proximity effects induced in graphene by magnetic insulators: first-principles calculations on spin filtering and exchange-splitting gaps. Phys. Rev. Lett. 110, 046603 (2013).
Zollner, K., Gmitra, M., Frank, T. & Fabian, J. Theory of proximity-induced exchange coupling in graphene on hBN/(Co, Ni). Phys. Rev. B 94, 155441 (2016).
Asshoff, P. et al. Magnetoresistance of vertical co-graphene–NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene. 2D Mater. 4, 031004 (2017).
Behera, S. K., Bora, M., Chowdhury, S. S. P. & Deb, P. Proximity effects in graphene and ferromagnetic CrBr3 van der Waals heterostructures. Phys. Chem. Chem. Phys. 21, 25788–25796 (2019).
Wei, P. et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 15, 711–716 (2016).
Wu, Y.-F. et al. Magnetic proximity effect in graphene coupled to a BiFeO3 nanoplate. Phys. Rev. B 95, 195426 (2017).
Tang, C., Zhang, Z., Lai, S., Tan, Q. & Gao, W.-b. Magnetic proximity effect in graphene/CrBr3 van der Waals heterostructures. Adv. Mater. 32, 1908498 (2020).
Wang, Z., Tang, C., Sachs, R., Barlas, Y. & Shi, J. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys. Rev. Lett. 114, 016603 (2015).
Tang, C. et al. Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure. APL Mater. 6, 026401 (2018).
Leutenantsmeyer, J. C., Kaverzin, A. A., Wojtaszek, M. & Van Wees, B. J. Proximity induced room temperature ferromagnetism in graphene probed with spin currents. 2D Mater. 4, 014001 (2016).
Singh, S. et al. Strong modulation of spin currents in bilayer graphene by static and fluctuating proximity exchange fields. Phys. Rev. Lett. 118, 187201 (2017).
Karpiak, B. et al. Magnetic proximity in a van der Waals heterostructure of magnetic insulator and graphene. 2D Mater. 7, 015026 (2019).
Cummings, A. W. Probing magnetism via spin dynamics in graphene/2D-ferromagnet heterostructures. J. Phys. Mater. 2, 045007 (2019).
Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5, 266–270 (2010).
Michetti, P., Recher, P. & Iannaccone, G. Electric field control of spin rotation in bilayer graphene. Nano Lett. 10, 4463–4469 (2010).
Michetti, P. & Recher, P. Spintronics devices from bilayer graphene in contact to ferromagnetic insulators. Phys. Rev. B 84, 125438 (2011).
Zollner, K., Gmitra, M. & Fabian, J. Electrically tunable exchange splitting in bilayer graphene on monolayer Cr2X2Te6 with X = Ge, Si, and Sn. New J. Phys. 20, 073007 (2018).
Cardoso, C., Soriano, D., GarcĂa-MartĂnez, N. & Fernández-Rossier, J. Van der Waals spin valves. Phys. Rev. Lett. 121, 067701 (2018).
Gibertini, M., Koperski, M., Morpurgo, A. & Novoselov, K. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).
Göser, O., Paul, W. & Kahle, H. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 92, 129–136 (1990).
Wang, H., Qi, J. & Qian, X. Electrically tunable high Curie temperature two-dimensional ferromagnetism in van der Waals layered crystals. Appl. Phys. Lett. 117, 083102 (2020).
Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020).
Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Preprint at http://arxiv.org/abs/2007.10715 (2020).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).
Dash, S. P., Sharma, S., Patel, R. S., de Jong, M. P. & Jansen, R. Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009).
Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).
Rameshti, B. Z. & Moghaddam, A. G. Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene. Phys. Rev. B 91, 155407 (2015).
Villamor, E., Isasa, M., Hueso, L. E. & Casanova, F. Temperature dependence of spin polarization in ferromagnetic metals using lateral spin valves. Phys. Rev. B 88, 184411 (2013).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Song, G., Ranjbar, M. & Kiehl, R. A. Operation of graphene magnetic field sensors near the charge neutrality point. Commun. Phys. 2, 95 (2019).
Mendes, J. et al. Spin-current to charge-current conversion and magnetoresistance in a hybrid structure of graphene and yttrium iron garnet. Phys. Rev. Lett. 115, 226601 (2015).
Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. nature 438, 201–204 (2005).
Tse, W.-K., Qiao, Z., Yao, Y., MacDonald, A. H. & Niu, Q. Quantum anomalous Hall effect in single-layer and bilayer graphene. Phys. Rev. B 83, 155447 (2011).
Zhou, B., Chen, X., Wang, H., Ding, K.-H. & Zhou, G. Magnetotransport and current-induced spin transfer torque in a ferromagnetically contacted graphene. J. Phys. Condens. Matter 22, 445302 (2010).
Chappert, C., Fert, A. & Van Dau, F. N. Nanoscience and Technology: A Collection of Reviews from Nature Journals (ed. Rodgers, P.) 147–157 (World Scientific, 2010).
Novoselov, K. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Li, H. et al. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7, 10344–10353 (2013).
Zomer, P. J., GuimarĂŁes, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).
Beck, J. Über chalkogenidhalogenide des chroms synthese, kristallstruktur und magnetismus von chromsulfidbromid, crsbr. Z. Anorg. Allg. Chem. 585, 157–167 (1990).
Acknowledgements
We thank M. H. D. Guimarães and E. J. Telford for discussions and T. J. Schouten, H. Adema, H. de Vries, A. Joshua and J. G. Holstein for technical support. This research received funding from the Dutch Foundation for Fundamental Research on Matter (FOM) as a part of the Netherlands Organisation for Scientific Research (NWO), FLAG-ERA (15FLAG01-2), the European Union’s Horizon 2020 research and innovation programme under grant agreements no. 785219 and no. 881603 (Graphene Flagship Core 2 and Core 3), NanoNed, the Zernike Institute for Advanced Materials and the Spinoza Prize awarded in 2016 to B.J.v.W. by NWO. Synthesis, structural characterization and magnetic measurements are supported as part of Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0019443. A.H.D. is supported by the NSF graduate research fellowship program (DGE 16-44869).
Author information
Authors and Affiliations
Contributions
T.S.G. and B.J.v.W. conceived the project. T.S.G. fabricated the devices and performed the main experiments and data analysis with the help of A.A.K. and supervision of B.J.v.W. A.A.K. performed the analytical modelling. T.S.G. and D.K.d.W. performed the measurements and data analysis of the AHE. A.H.D. and X.R. synthesized the CrSBr crystals and performed the SQUID magnetometry and analysis. T.S.G. wrote the manuscript and Supplementary Information with help from A.A.K. All the authors discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections 1–20.
Source data
Source Data Fig. 1
Numerical data used to generate graphs in the figures.
Source Data Fig. 2
Numerical data used to generate graphs in the figures.
Source Data Fig. 3
Numerical data used to generate graphs in the figures.
Source Data Fig. 4
Numerical data used to generate graphs in the figures.
Source Data Fig. 5
Numerical data used to generate graphs in the figures.
Rights and permissions
About this article
Cite this article
Ghiasi, T.S., Kaverzin, A.A., Dismukes, A.H. et al. Electrical and thermal generation of spin currents by magnetic bilayer graphene. Nat. Nanotechnol. 16, 788–794 (2021). https://doi.org/10.1038/s41565-021-00887-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-021-00887-3
This article is cited by
-
Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping
Nature Communications (2023)
-
Electrically tunable lateral spin-valve transistor based on bilayer CrI3
npj 2D Materials and Applications (2023)
-
Ferromagnetism in sp2 carbon
Nano Research (2023)
-
Highly anisotropic van der Waals magnetism
Nature Materials (2022)
-
Boosting proximity spin–orbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure
npj 2D Materials and Applications (2021)