Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Nanoplastics are neither microplastics nor engineered nanoparticles

Abstract

Increasing concern and research on the subject of plastic pollution has engaged the community of scientists working on the environmental health and safety of nanomaterials. While many of the methods developed in nano environment, health and safety work have general applicability to the study of particulate plastics, the nanometric size range has important consequences for both the analytical challenges of studying nanoscale plastics and the environmental implications of these incidental nanomaterials. Related to their size, nanoplastics are distinguished from microplastics with respect to their transport properties, interactions with light and natural colloids, a high fraction of particle molecules on the surface, bioavailability and diffusion times for the release of plastic additives. Moreover, they are distinguished from engineered nanomaterials because of their high particle heterogeneity and their potential for rapid further fragmentation in the environment. These characteristics impact environmental fate, potential effects on biota and human health, sampling and analysis. Like microplastics, incidentally produced nanoplastics exhibit a diversity of compositions and morphologies and a heterogeneity that is typically absent from engineered nanomaterials. Therefore, nanoscale plastics must be considered as distinct from both microplastics and engineered nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Number of publications obtained from Scopus that use the search terms shown in the title, abstract and/or keywords in the past four decades.
Fig. 2: Transformations and characteristics of plastic debris in the environment from the microscale to the nanoscale.

Orcéine

Fig. 3: Relative proportion of NOM compared with plastic according to the size of plastic debris.

Orcéine

Similar content being viewed by others

References

  1. Eriksen, M. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).

    Article  Google Scholar 

  2. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  3. Jambeck, J. R. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Article  CAS  Google Scholar 

  4. Sebille, Evan A global inventory of small floating plastic debris. Env. Res Lett. 10, 124006 (2015).

    Article  Google Scholar 

  5. Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).

    Article  CAS  Google Scholar 

  6. Ekvall, M. T. Nanoplastics formed during the mechanical breakdown of daily-use polystyrene products. Nanoscale Adv. 1, 1055–1061 (2019).

    Article  CAS  Google Scholar 

  7. Hernandez, L. M. et al. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ. Sci. Technol. 53, 12300–12310 (2019).

    Article  CAS  Google Scholar 

  8. Lambert, S. & Wagner, M. Formation of microscopic particles during the degradation of different polymers. Chemosphere 161, 510–517 (2016).

    Article  CAS  Google Scholar 

  9. Dawson, A. L. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).

    Article  Google Scholar 

  10. Nguyen, B. et al. Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc. Chem. Res. 52, 858–866 (2019).

    Article  CAS  Google Scholar 

  11. Ter Halle, A. et al. Nanoplastic in the North Atlantic subtropical gyre. Environ. Sci. Technol. 51, 13689–13697 (2017).

    Article  Google Scholar 

  12. Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M. & Tufenkji, N. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 44, 6532–6549 (2010).

    Article  CAS  Google Scholar 

  13. Chen, Z., Westerhoff, P. & Herckes, P. Quantification of C60 fullerene concentrations in water. Env. Toxicol. Chem. 27, 1852–1859 (2008).

    Article  CAS  Google Scholar 

  14. Benn, T. M. & Westerhoff, P. Nanoparticle silver released into water from commercially available sock fabrics. Env. Sci. Technol. 42, 4133–4139 (2008).

    Article  CAS  Google Scholar 

  15. Wang, Y., Westerhoff, P. & Hristovski, K. D. Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. J. Hazard. Mater. 201–202, 16–22 (2012).

    Article  Google Scholar 

  16. Gangadoo, S. et al. Nano-plastics and their analytical characterisation and fate in the marine environment: from source to sea. Sci. Total Environ. 732, 138792 (2020).

    Article  CAS  Google Scholar 

  17. Gigault, J. et al. Current opinion: what is a nanoplastic? Environ. Pollut. 235, 1030–1034 (2018).

    Article  CAS  Google Scholar 

  18. Rist, S. & Hartmann, N. B. in Freshwater Microplastics: Emerging Environmental Contaminants? (eds Wagner, M. & Lambert, S.) 25–49 (Springer, 2018).

  19. Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    Article  CAS  Google Scholar 

  20. Auffan, M. et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4, 634–641 (2009).

    Article  CAS  Google Scholar 

  21. Isaacson, C. W., Kleber, M. & Field, J. A. Quantitative analysis of fullerene nanomaterials in environmental systems: a critical review. Environ. Sci. Technol. 43, 6463–6474 (2009).

    Article  CAS  Google Scholar 

  22. Plastics: The Facts 2019 (PlasticsEurope, 2019); https://www.plasticseurope.org/en/resources/publications/1804-plastics-facts-2019

  23. Resnik, D. B. How should engineered nanomaterials be regulated for public and environmental health? AMA J. Ethics 21, 363–369 (2019).

    Article  Google Scholar 

  24. Mourdikoudis, S., Pallares, R. M. & Thanh, N. T. K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10, 12871–12934 (2018).

    Article  CAS  Google Scholar 

  25. Sander, M., Kohler, H.-P. E. & McNeill, K. Assessing the environmental transformation of nanoplastic through 13C-labelled polymers. Nat. Nanotechnol. 14, 301–303 (2019).

    Article  CAS  Google Scholar 

  26. Rochman, C. M. et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 38, 703–711 (2019).

    Article  CAS  Google Scholar 

  27. Liu, P. et al. Effect of weathering on environmental behavior of microplastics: properties, sorption and potential risks. Chemosphere 242, 125193 (2020).

    Article  CAS  Google Scholar 

  28. Holmes, L. A., Turner, A. & Thompson, R. C. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar. Chem. 167, 25–32 (2014).

    Article  CAS  Google Scholar 

  29. Balakrishnan, G., Déniel, M., Nicolai, T., Chassenieux, C. & Lagarde, F. Towards more realistic reference microplastics and nanoplastics: preparation of polyethylene micro/nanoparticles with a biosurfactant. Environ. Sci. Nano 6, 315–324 (2019).

    Article  CAS  Google Scholar 

  30. Pessoni, L. et al. Soap- and metal-free polystyrene latex particles as a nanoplastic model. Environ. Sci. Nano 6, 2253–2258 (2019).

    Article  CAS  Google Scholar 

  31. Mitrano, D. M. et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nat. Nanotechnol. 14, 362–368 (2019).

    Article  CAS  Google Scholar 

  32. Wagner, S. & Reemtsma, T. Things we know and don’t know about nanoplastic in the environment. Nat. Nanotechnol. 14, 300–301 (2019).

    Article  CAS  Google Scholar 

  33. Koelmans, A. A. Proxies for nanoplastic. Nat. Nanotechnol. 14, 307–308 (2019).

    Article  CAS  Google Scholar 

  34. Azimi, P., Zhao, D., Pouzet, C., Crain, N. E. & Stephens, B. Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ. Sci. Technol. 50, 1260–1268 (2016).

    Article  CAS  Google Scholar 

  35. Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).

    Article  CAS  Google Scholar 

  36. Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013).

    Article  CAS  Google Scholar 

  37. Amaral-Zettler, L. A., Zettler, E. R. & Mincer, T. J. Ecology of the plastisphere. Nat. Rev. Microbiol. 18, 139–151 (2020).

    Article  CAS  Google Scholar 

  38. Muncke, J. Exposure to endocrine disrupting compounds via the food chain: is packaging a relevant source? Sci. Total Environ. 407, 4549–4559 (2009).

    Article  CAS  Google Scholar 

  39. Zimmermann, L., Dierkes, G., Ternes, T. A., Völker, C. & Wagner, M. Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environ. Sci. Technol. 53, 11467–11477 (2019).

    Article  CAS  Google Scholar 

  40. Hirai, H. et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62, 1683–1692 (2011).

    Article  CAS  Google Scholar 

  41. Crank J. The Mathematics of Diffusion (Elsevier, 1975).

  42. Mercea, P. V. et al. Modelling migration of substances from polymers into drinking water. Part 1 - diffusion coefficient estimations. Polym. Test. 65, 176–188 (2018).

    Article  CAS  Google Scholar 

  43. Al-Sid-Cheikh, M. et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations. Environ. Sci. Technol. 52, 14480–14486 (2018).

    Article  CAS  Google Scholar 

  44. Karlsson, H. L., Gustafsson, J., Cronholm, P. & Möller, L. Size-dependent toxicity of metal oxide particles–a comparison between nano- and micrometer size. Toxicol. Lett. 188, 112–118 (2009).

    Article  CAS  Google Scholar 

  45. Ruenraroengsak, P. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles. Nanotoxicology 6, 94–108 (2012).

    Article  CAS  Google Scholar 

  46. Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).

    Article  CAS  Google Scholar 

  47. Zhao, J. & Stenzel, M. H. Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym. Chem. 9, 259–272 (2018).

    Article  CAS  Google Scholar 

  48. Johnston, C. J. et al. Pulmonary effects induced by ultrafine PTFE particles. Toxicol. Appl. Pharmacol. 168, 208–215 (2000).

    Article  CAS  Google Scholar 

  49. Schwab, F. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–critical review. Nanotoxicology 10, 257–278 (2016).

    Article  CAS  Google Scholar 

  50. Rist, S., Baun, A. & Hartmann, N. B. Ingestion of micro- and nanoplastics in Daphnia magna – quantification of body burdens and assessment of feeding rates and reproduction. Environ. Pollut. 228, 398–407 (2017).

    Article  CAS  Google Scholar 

  51. Miao, L. et al. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification. Environ. Pollut. 255, 113300 (2019).

    Article  CAS  Google Scholar 

  52. Astefanei, A. et al. Characterization of aggregates of surface modified fullerenes by asymmetrical flow field-flow fractionation with multi-angle light scattering detection. J. Chromatogr. A 1408, 197–206 (2015).

    Article  CAS  Google Scholar 

  53. Bolea, E., Jiménez-Lamana, J., Laborda, F. & Castillo, J. R. Size characterization and quantification of silver nanoparticles by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 401, 2723–2732 (2011).

    Article  CAS  Google Scholar 

  54. Kammer, F., von der, Legros, S., Hofmann, T., Larsen, E. H. & Loeschner, K. Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. Trends Anal. Chem. 30, 425–436 (2011).

    Article  Google Scholar 

  55. Baalousha, M., Stolpe, B. & Lead, J. R. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J. Chromatogr. A 1218, 4078–4103 (2011).

    Article  CAS  Google Scholar 

  56. Gigault, J., El Hadri, H., Reynaud, S., Deniau, E. & Grassl, B. Asymmetrical flow field flow fractionation methods to characterize submicron particles: application to carbon-based aggregates and nanoplastics. Anal. Bioanal. Chem. 409, 6761–6769 (2017).

    Article  CAS  Google Scholar 

  57. Correia, M. & Loeschner, K. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations. Anal. Bioanal. Chem. https://doi.org/10.1007/s00216-018-0919-8 (2018).

  58. Dazzi, A. & Prater, C. B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017).

    Article  CAS  Google Scholar 

  59. Domingos, R. F. et al. Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ. Sci. Technol. 43, 7277–7284 (2009).

    Article  CAS  Google Scholar 

  60. Stone, V. et al. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci. Total Environ. 408, 1745–1754 (2010).

    Article  CAS  Google Scholar 

  61. Mintenig, S. M., Bäuerlein, P. S., Koelmans, A. A., Dekker, S. C. & Van Wezel, A. P. Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environ. Sci. Nano 5, 1640–1649 (2018).

    Article  CAS  Google Scholar 

  62. Davranche, M. et al. Are nanoplastics able to bind significant amount of metals? The lead example. Environ. Pollut. 249, 940–948 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.G. acknowledges funding from the French Agency of Research. B.N. acknowledges funding from the Natural Sciences and Engineering Research Council Postdoctoral Fellowships programme and the Eugenie Ulmer Lamothe fund in the Department of Chemical Engineering at McGill University. N.T. acknowledges funding from the Canada Research Chairs programme, the Natural Sciences and Engineering Research Council of Canada and the Killam Research Fellowship. L.R. acknowledges support from Mitacs and Merinov.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julien Gigault or Nathalie Tufenkji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Martin Wagner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gigault, J., El Hadri, H., Nguyen, B. et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507 (2021). https://doi.org/10.1038/s41565-021-00886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00886-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing