Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Floating solid-state thin films with dynamic structural colour

An Author Correction to this article was published on 04 May 2022

This article has been updated

Abstract

Thin-film architectures are a staple in a wide range of technologies, such as semiconductor devices, optical coatings, magnetic recording, solar cells and batteries. Despite the industrial success of thin-film technology, mostly due to the easy fabrication and low cost, a fundamental drawback remains: it is challenging to alter the features of the film once fabricated. Here we report a methodology to modify the thickness and sequence of the innermost solid-state thin-film layers. We start with a thin-film stack of amorphous iron oxide and silver. By applying a suitable voltage bias and then reversing it, we can float the silver layer above or below the oxide layer by virtue of the migration of silver atoms. Scanning transmission electron microscopy reveals various sequences and thicknesses of the silver and oxide layers achieved with different experimental conditions. As a proof-of-principle, we show a dynamic change of structural colours of the stack derived from this process. Our results may offer opportunities to dynamically reconfigure thin-film-based functional nanodevices in situ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Floating solid-state thin-film architecture.
Fig. 2: Reversible and dynamic multicolour tuning from a single floating thin-film device.
Fig. 3: Nanopixelled pattern on a FSTF.
Fig. 4: Large-scale colour images on a FSTF.

Similar content being viewed by others

Data availability

The data that support the findings of this study are publicly available at https://doi.org/10.6084/m9.figshare.14060672. Source data are provided with this paper.

Change history

References

  1. Diao, Y. et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater. 12, 665–671 (2013).

    Article  CAS  Google Scholar 

  2. Kats, M. A., Blanchard, R., Genevet, P. & Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 12, 20–24 (2013).

    Article  CAS  Google Scholar 

  3. Xi, J.-Q. et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photon. 1, 176–179 (2007).

    Article  CAS  Google Scholar 

  4. Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  5. Green, M. A. Thin-film solar cells: review of materials, technologies and commercial status. J. Mater. Sci. Mater. Electron. 18, 15–19 (2007).

    Article  Google Scholar 

  6. Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

    Article  CAS  Google Scholar 

  7. Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020).

    Article  CAS  Google Scholar 

  8. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  CAS  Google Scholar 

  9. Tan, D. H., Banerjee, A., Chen, Z. & Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020).

    Article  CAS  Google Scholar 

  10. Brongersma, M. L. Introductory lecture: nanoplasmonics. Faraday Discuss. 178, 9–36 (2015).

    Article  CAS  Google Scholar 

  11. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  CAS  Google Scholar 

  12. Kong, B., Selomulya, C., Zheng, G. & Zhao, D. New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. Chem. Soc. Rev. 44, 7997–8018 (2015).

    Article  CAS  Google Scholar 

  13. Nogueira, G. M., Banerjee, D., Cohen, R. E. & Rubner, M. F. Spray-layer-by-layer assembly can more rapidly produce optical-quality multistack heterostructures. Langmuir 27, 7860–7867 (2011).

    Article  CAS  Google Scholar 

  14. Yang, D., Ye, S. & Ge, J. From metastable colloidal crystalline arrays to fast responsive mechanochromic photonic gels: an organic gel for deformation‐based display panels. Adv. Funct. Mater. 24, 3197–3205 (2014).

    Article  CAS  Google Scholar 

  15. Kim, J. B. et al. Wrinkles and deep folds as photonic structures in photovoltaics. Nat. Photon. 6, 327–332 (2012).

    Article  CAS  Google Scholar 

  16. Park, W. & Lee, J.-B. Mechanically tunable photonic crystal structure. Appl. Phys. Lett. 85, 4845–4847 (2004).

    Article  CAS  Google Scholar 

  17. Snoswell, D. R. et al. Shear ordering in polymer photonic crystals. Phys. Rev. E 81, 020401 (2010).

    Article  CAS  Google Scholar 

  18. Tse, W.-K. & MacDonald, A. H. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys. Rev. Lett. 105, 057401 (2010).

    Article  Google Scholar 

  19. Kim, H. et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat. Photon. 3, 534–540 (2009).

    Article  CAS  Google Scholar 

  20. Yan, C. et al. Stretchable and wearable electrochromic devices. ACS Nano 8, 316–322 (2014).

    Article  CAS  Google Scholar 

  21. Liu, Y. et al. Structural colour three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 4340 (2019).

    Article  Google Scholar 

  22. Luo, C., Narayanaswamy, A., Chen, G. & Joannopoulos, J. Thermal radiation from photonic crystals: a direct calculation. Phys. Rev. Lett. 93, 213905 (2004).

    Article  Google Scholar 

  23. Ito, M. M. et al. Structural colour using organized microfibrillation in glassy polymer films. Nature 570, 363–367 (2019).

    Article  CAS  Google Scholar 

  24. Lee, H. S., Shim, T. S., Hwang, H., Yang, S.-M. & Kim, S.-H. Colloidal photonic crystals toward structural colour palettes for security materials. Chem. Mater. 25, 2684–2690 (2013).

    Article  CAS  Google Scholar 

  25. Gupta, T. D. et al. Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities. Nat. Nanotechnol. 14, 320–327 (2019).

    Article  Google Scholar 

  26. Duan, X., Kamin, S. & Liu, N. Dynamic plasmonic colour display. Nat. Commun. 8, 14606 (2017).

    Article  CAS  Google Scholar 

  27. Huang, M. T. et al. Voltage-gated optics and plasmonics enabled by solid-state proton pumping. Nat. Commun. 10, 5030 (2019).

    Article  Google Scholar 

  28. Ríos, C., Hosseini, P., Taylor, R. A. & Bhaskaran, H. Colour depth modulation and resolution in phase-change material nanodisplays. Adv. Mater. 28, 4720–4726 (2016).

    Article  Google Scholar 

  29. Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

    Article  CAS  Google Scholar 

  30. Dong, W. et al. Wide bandgap phase change material tuned visible photonics. Adv. Funct. Mater. 29, 1806181 (2018).

    Article  Google Scholar 

  31. Zhu, X., Vannahme, C., Højlund-Nielsen, E., Mortensen, N. A. & Kristensen, A. Plasmonic colour laser printing. Nat. Nanotechnol. 11, 325–329 (2016).

    Article  CAS  Google Scholar 

  32. Zhu, X., Yan, W., Levy, U., Mortensen, N. A. & Kristensen, A. Resonant laser printing of structural colours on high-index dielectric metasurfaces. Sci. Adv. 3, e1602487 (2017).

    Article  Google Scholar 

  33. Kim, T.-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011).

    Article  CAS  Google Scholar 

  34. Kristensen, A. et al. Plasmonic colour generation. Nat. Rev. Mater. 2, 16088 (2017).

    Article  CAS  Google Scholar 

  35. Vlasov, Y. A., Bo, X.-Z., Sturm, J. C. & Norris, D. J. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001).

    Article  CAS  Google Scholar 

  36. Zhou, Y. et al. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photon. 9, 409–415 (2015).

    Article  CAS  Google Scholar 

  37. Oh, Y. et al. Plasmonic periodic nanodot arrays via laser interference lithography for organic photovoltaic cells with >10% efficiency. ACS Nano 10, 10143–10151 (2016).

    Article  CAS  Google Scholar 

  38. Jolly Bose, R. et al. Effect of silver incorporation in phase formation and band gap tuning of tungsten oxide thin films. J. Appl. Phys. 112, 114311 (2012).

    Article  Google Scholar 

  39. Mathew, M. et al. Anomalous behavior of silver doped indium sulfide thin films. J. Appl. Phys. 100, 033504 (2006).

    Article  Google Scholar 

  40. Yamashita, T. & Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.Z. acknowledges the support from National Key R&D Program of China 2018YFE0200200. C.-W.Q. acknowledges the support from the National Research Foundation, Prime Minister’s Office, Singapore, under Competitive Research Program (Award NRF-CRP22-2019-0006). C.W.Q is also supported by the grant (R-261-518-004-720) from Advanced Research an Technology Innovation Center (ARTIC) and the grant (R-263-000-E55-305) from A*STAR under the Advanced Manufacturing and Engineering (AME) Individual Research Grant (IRG), under no. A2083c0060. We acknowledge the support from Park Systems Pte Ltd, C. Lee and S. R. Wang for assistance with the nanopixel imaging demonstration. We sincerely thank B. Tai., W. He. and L. B. Cheng for their useful discussion during the initial period of this work. We thank L. Song. for the discussion of device design, and Y. S. Tan for his kind assistance during the device fabrication.

Author information

Authors and Affiliations

Authors

Contributions

R.Z., C.-W.Q. and Z.Y. conceived the idea. Z.Y. designed this work under the guidance of C.-W.Q., R.Z. and C.T.C. Z.Y. fabricated the devices and measured the optical spectra. Reflectivity simulations were conducted by Z.Y. and S.S. Park Systems Pte Ltd and Z.Y. performed the demonstration of nanopixel imaging. Z.Z. performed the XPS characterization and analysis. The microstructure characterization was conducted by Z.Y. with advice from X.J. W.W. did the density functional theory calculations. Z.Y., R.Z. and C.-W.Q. wrote the paper with inputs from all the co-authors. C.-W.Q. and R.Z. supervised the project. All the authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Chong Tow Chong, Cheng-Wei Qiu or Rong Zhao.

Ethics declarations

Competing interests

The authors disclose a submitted patent application on a related structure altering of solid-sate thin films reported in this article, Singapore Patent application number 10201912602P filed in January 2020. The patent applicant is the Singapore University of Technology and Design. The inventors are Z.Y. and the co-authors R.Z. and X.J. All other authors declare no other competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Notes.

Supplementary Data

Numerical and raw data.

Source data

Source Data Fig. 2

Raw data of Fig. 2a, Fig. 2c, Fig. 2e, Fig. 2f and Fig. 2g

Source Data Fig. 4

Raw data of Fig. 4e.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Zhang, Z., Wu, W. et al. Floating solid-state thin films with dynamic structural colour. Nat. Nanotechnol. 16, 795–801 (2021). https://doi.org/10.1038/s41565-021-00883-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00883-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing