Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrical tuning of phase-change antennas and metasurfaces

Abstract

The success of semiconductor electronics is built on the creation of compact, low-power switching elements that offer routing, logic and memory functions. The availability of nanoscale optical switches could have a similarly transformative impact on the development of dynamic and programmable metasurfaces, optical neural networks and quantum information processing. Phase-change materials are uniquely suited to enable their creation as they offer high-speed electrical switching between amorphous and crystalline states with notably different optical properties. Their high refractive index has already been harnessed to fashion them into compact optical antennas. Here, we take the next important step, by showing electrically-switchable phase-change antennas and metasurfaces that offer strong, reversible, non-volatile, multi-phase switching and spectral tuning of light scattering in the visible and near-infrared spectral ranges. Their successful implementation relies on a careful joint thermal and optical optimization of the antenna elements that comprise a silver strip that simultaneously serves as a plasmonic resonator and a miniature heating stage. Our metasurface affords electrical modulation of the reflectance by more than fourfold at 755 nm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Operation and optical response of an electrically tunable phase-change antenna.
Fig. 2: Electrothermal switching of optical antennas.
Fig. 3: In situ optical measurement of an antenna.
Fig. 4: An electrically tunable phase-change metasurface.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).

    Article  Google Scholar 

  2. Lalanne, P. & Chavel, P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photon. Rev. 11, 1600295 (2017).

    Article  Google Scholar 

  3. Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    Article  CAS  Google Scholar 

  4. Caloz, C. & Deck-Leger, Z.-L. Spacetime metamaterials—Part I: general concepts. IEEE Trans. Antennas Propag. 68, 1569–1582 (2020).

    Article  Google Scholar 

  5. Holsteen, A. L., Raza, S., Fan, P., Kik, P. G. & Brongersma, M. L. Purcell effect for active tuning of light scattering from semiconductor optical antennas. Science 358, 1407–1410 (2017).

    Article  CAS  Google Scholar 

  6. Gao, L. et al. Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures. ACS Nano 9, 5968–5975 (2015).

    Article  CAS  Google Scholar 

  7. Cencillo-Abad, P., Ou, J. Y., Plum, E. & Zheludev, N. I. Electro-mechanical light modulator based on controlling the interaction of light with a metasurface. Sci. Rep. 7, 5405 (2017).

    Article  Google Scholar 

  8. Afridi, A. et al. Electrically driven varifocal silicon metalens. ACS Photonics 5, 4497–4503 (2018).

    Article  CAS  Google Scholar 

  9. Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018).

    Article  Google Scholar 

  10. Emani, N. K. et al. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 12, 5202–5206 (2012).

    Article  CAS  Google Scholar 

  11. Park, J., Kang, J.-H., Kim, S. J., Liu, X. & Brongersma, M. L. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett. 17, 407–413 (2017).

    Article  CAS  Google Scholar 

  12. Huang, Y.-W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).

    Article  CAS  Google Scholar 

  13. Iyer, P. P., Pendharkar, M., Palmstrøm, C. J. & Schuller, J. A. III–V heterojunction platform for electrically reconfigurable dielectric metasurfaces. ACS Photonics 6, 1345–1350 (2019).

    Article  CAS  Google Scholar 

  14. Jun, Y. C. et al. Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures. Nano Lett. 13, 5391–5396 (2013).

    Article  CAS  Google Scholar 

  15. Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).

    Article  Google Scholar 

  16. Emboras, A. et al. Atomic scale plasmonic switch. Nano Lett. 16, 709–714 (2016).

    Article  CAS  Google Scholar 

  17. Di Martino, G., Tappertzhofen, S., Hofmann, S. & Baumberg, J. Nanoscale plasmon-enhanced spectroscopy in memristive switches. Small 12, 1334–1341 (2016).

    Article  Google Scholar 

  18. Schoen, D. T., Holsteen, A. L. & Brongersma, M. L. Probing the electrical switching of a memristive optical antenna by STEM EELS. Nat. Commun. 7, 12162 (2061).

    Article  Google Scholar 

  19. Li, Y., van de Groep, J., Talin, A. A. & Brongersma, M. L. Dynamic tuning of gap plasmon resonances using a solid-state electrochromic device. Nano Lett. 19, 7988–7995 (2019).

    Article  CAS  Google Scholar 

  20. Minovich, A. et al. Liquid crystal based nonlinear fishnet metamaterials. Appl. Phys. Lett. 100, 121113 (2012).

    Article  Google Scholar 

  21. Buchnev, O., Ou, J. Y., Kaczmarek, M., Zheludev, N. I. & Fedotov, V. A. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. Opt. Express 21, 1633 (2013).

    Article  CAS  Google Scholar 

  22. Li, S.-Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    Article  CAS  Google Scholar 

  23. Soares, B. F., Jonsson, F. & Zheludev, N. I. All-optical phase-change memory in a single gallium nanoparticle. Phys. Rev. Lett. 98, 153905 (2007).

    Article  Google Scholar 

  24. Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 11, 465–476 (2017).

    Article  CAS  Google Scholar 

  25. Ding, F., Yang, Y. & Bozhevolnyi, S. I. Dynamic metasurfaces using phase-change chalcogenides. Adv. Opt. Mater. 7, 1801709 (2019).

    Article  Google Scholar 

  26. Driscoll, T. et al. Memory metamaterials. Science 325, 1518–1521 (2009).

    Article  CAS  Google Scholar 

  27. Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2015).

    Article  Google Scholar 

  28. Chu, C. H. et al. Active dielectric metasurface based on phase-change medium. Laser Photon. Rev. 10, 986–994 (2016).

    Article  CAS  Google Scholar 

  29. Abdollahramezani, S. et al. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics 9, 1189–1241 (2020).

    Article  CAS  Google Scholar 

  30. Zhu, Z., Evans, P. G., Haglund, R. F. & Valentine, J. G. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett. 17, 4881–4885 (2017).

    Article  CAS  Google Scholar 

  31. Kim, Y. et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett. 19, 3961–3968 (2019).

    Article  CAS  Google Scholar 

  32. Wong, H.-S. P. et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010).

    Article  Google Scholar 

  33. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  34. Anbarasu, M. & Wuttig, M. Understanding the structure and properties of phase change materials for data storage applications. J. Indian Inst. Sci. 91, 259–274 (2012).

    Google Scholar 

  35. Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

    Article  CAS  Google Scholar 

  36. Tittl, A. et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 27, 4597–4603 (2015).

    Article  CAS  Google Scholar 

  37. Raoux, S., Xiong, F., Wuttig, M. & Pop, E. Phase change materials and phase change memory. MRS Bull. 39, 703–710 (2014).

    Article  Google Scholar 

  38. Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    Article  CAS  Google Scholar 

  39. Ann-Katrin, U. M. et al. Using low-loss phase-change materials for mid-infrared antenna resonance switching. Nano Lett. 13, 3470–3475 (2013).

    Article  Google Scholar 

  40. Michel, A. K. U. et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. ACS Photonics 1, 833–839 (2014).

    Article  CAS  Google Scholar 

  41. Alaee, R., Albooyeh, M., Tretyakov, S. & Rockstuhl, C. Phase-change material-based nanoantennas with tunable radiation patterns. Opt. Lett. 41, 4099–4102 (2016).

    Article  CAS  Google Scholar 

  42. Carrillo, S. G.-C., Alexeev, A. M., Au, Y.-Y. & Wright, C. D. Reconfigurable phase-change meta-absorbers with on-demand quality factor control. Opt. Express 26, 25567 (2018).

    Article  CAS  Google Scholar 

  43. Ruiz de Galarreta, C. et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica 7, 476 (2020).

    Article  Google Scholar 

  44. Rudé, M., Simpson, R. E., Quidant, R., Pruneri, V. & Renger, J. Active control of surface plasmon waveguides with a phase change material. ACS Photonics 2, 669–674 (2015).

    Article  Google Scholar 

  45. de Galarreta, C. R. et al. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared. Adv. Funct. Mater. 28, 1704993 (2018).

    Article  Google Scholar 

  46. Yin, X. et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl. 6, e17016 (2017).

    Article  CAS  Google Scholar 

  47. Carrillo, S. G. et al. A nonvolatile phase‐change metamaterial color display. Adv. Opt. Mater. 7, 1801782 (2019).

    Article  Google Scholar 

  48. Leitis, A. et al. All-dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater. 30, 1910259 (2020).

    Article  CAS  Google Scholar 

  49. Liang, G. et al. Comparison of optical and electrical transient response during nanosecond laser pulse-induced phase transition of Ge2Sb2Te5 thin films. Chem. Phys. Lett. 507, 203–207 (2011).

    Article  CAS  Google Scholar 

  50. Farmakidis, N. et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci. Adv. 5, eaaw2687 (2019).

    Article  CAS  Google Scholar 

  51. Hamann, H. F., O’Boyle, M., Martin, Y. C., Rooks, M. & Wickramasinghe, H. K. Ultra-high-density phase-change storage and memory. Nat. Mater. 5, 383–387 (2006).

    Article  CAS  Google Scholar 

  52. Ahn, C. et al. Crystallization properties and their drift dependence in phase-change memory studied with a micro-thermal stage. J. Appl. Phys. 110, 114520 (2011).

    Article  Google Scholar 

  53. Kato, K., Kuwahara, M., Kawashima, H., Tsuruoka, T. & Tsuda, H. Current-driven phase-change optical gate switch using indium-tin-oxide heater. Appl. Phys. Express 10, 072201 (2017).

    Article  Google Scholar 

  54. Au, Y.-Y., Bhaskaran, H. & Wright, C. D. Phase-change devices for simultaneous optical-electrical applications. Sci. Rep. 7, 9688 (2017).

    Article  Google Scholar 

  55. Zheng, J. et al. Nonvolatile electrically peconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater. 32, 2001218 (2020).

    Article  CAS  Google Scholar 

  56. Søndergaard, T. & Bozhevolnyi, S. I. Strip and gap plasmon polariton optical resonators. Phys. Status Solidi 245, 9–19 (2008).

    Article  Google Scholar 

  57. Chen, Y. et al. Resolving glass transition in Te-based phase-change materials by modulated differential scanning calorimetry. Appl. Phys. Express 10, 105601 (2017).

    Article  Google Scholar 

  58. Suh, D.-S. et al. Critical quenching speed determining phase of Ge2Sb2Te5 in phase-change memory. In Proc. International Electron Devices Meeting (IEEE, 2006).

  59. Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69–76 (2021).

    Article  CAS  Google Scholar 

  60. Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569 (2012).

    Article  CAS  Google Scholar 

  61. Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat Nanotechnol. https://doi.org/10.1038/s41565-021-00881-9 (2021).

Download references

Acknowledgements

The work was supported by Samsung Advanced Institute of Technology. We would also like to acknowledge funding from AFOSR MURI grant (FA9550-17-1-0002). Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-1542152. U.C. was supported in part by Fonds voor Wetenschappelijk Onderzoek—Vlaanderen (FWO).

Author information

Authors and Affiliations

Authors

Contributions

Y.W., P.L., J.P and M.L.B. conceived the ideas for this research project. Y.W. fabricated the devices, performed optical simulations and implemented optical microscopy measurements. D.S. and A.M. prepared the sample and carried out TEM measurements. Y.W. conducted thermal simulations and electrical measurements with the help of K.O. and H.-S.P.W. Conductive atomic force microscopy measurements were performed by Y.W. and U.C. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Mark L. Brongersma.

Ethics declarations

Competing interests

Y.W., M.L.B. and J.P. are inventors on the US patent provisional application (63/064,687) held and submitted by Samsung Electronics that covers the use of electrically tunable phase-change antennas in metasurfaces for dynamic wavefront control.

Additional information

Peer review information Nature Nanotechnology thanks Alex Krasnok, Ho Wai Howard Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6 and Figs. 1–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Landreman, P., Schoen, D. et al. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 16, 667–672 (2021). https://doi.org/10.1038/s41565-021-00882-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00882-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing