Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material

Abstract

Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability and functionality compared to their traditional bulk counterparts. Optical phase-change materials (PCMs) offer an appealing material solution for active metasurface devices with their large index contrast and non-volatile switching characteristics. Here we report a large-scale, electrically reconfigurable non-volatile metasurface platform based on optical PCMs. The optical PCM alloy used in the devices, Ge2Sb2Se4Te (GSST), uniquely combines giant non-volatile index modulation capability, broadband low optical loss and a large reversible switching volume, enabling notably enhanced light–matter interactions within the active optical PCM medium. Capitalizing on these favourable attributes, we demonstrated quasi-continuously tuneable active metasurfaces with record half-octave spectral tuning range and large optical contrast of over 400%. We further prototyped a polarization-insensitive phase-gradient metasurface to realize dynamic optical beam steering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device configuration and switching schemes.
Fig. 2: Temperature distribution of the device platform.
Fig. 3: Demonstration of bi-state spectral tuning.
Fig. 4: Demonstration of quasi-continuous spectral tuning.
Fig. 5: Demonstration of reconfigurable beam steering.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    Article  CAS  Google Scholar 

  2. Shalaginov, M. Y. et al. Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics 9, 3505–3534 (2020).

    Article  Google Scholar 

  3. Kang, L., Jenkins, R. P. & Werner, D. H. Recent progress in active optical metasurfaces. Adv. Opt. Mater. 7, 1801813 (2019).

    Article  Google Scholar 

  4. Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018).

    Article  Google Scholar 

  5. She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, eaap9957 (2018).

    Article  Google Scholar 

  6. Zanotto, S. et al. Metasurface reconfiguration through lithium-ion intercalation in a transition metal oxide. Adv. Opt. Mater. 5, 1600732 (2017).

    Article  Google Scholar 

  7. Kafaie Shirmanesh, G., Sokhoyan, R., Pala, R. A. & Atwater, H. A. Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett. 18, 2957–2963 (2018).

    Article  CAS  Google Scholar 

  8. Li, S. Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    Article  CAS  Google Scholar 

  9. Ding, L. et al. Electrically and thermally tunable smooth silicon metasurfaces for broadband terahertz antireflection. Adv. Opt. Mater. 6, https://doi.org/10.1002/adom.201800928 (2018).

  10. Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).

    Article  Google Scholar 

  11. Rahmani, M. et al. Reversible thermal tuning of all-dielectric metasurfaces. Adv. Funct. Mater. 27, 1700580 (2017).

    Article  Google Scholar 

  12. Abdollahramezani, S. et al. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics 9, 1189–1241 (2020).

    Article  CAS  Google Scholar 

  13. Pitchappa, P. et al. Chalcogenide phase change material for active terahertz photonics. Adv. Mater. 31, 1808157 (2019).

    Article  Google Scholar 

  14. Zhu, Z., Evans, P. G., Haglund, R. F. & Valentine, J. G. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett. 17, 4881–4885 (2017).

    Article  CAS  Google Scholar 

  15. Kim, Y. et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett. 19, 3961–3968 (2019).

    Article  CAS  Google Scholar 

  16. Kats, M. A. et al. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt. Lett. 38, 368–370 (2013).

    Article  CAS  Google Scholar 

  17. Liu, L., Kang, L., Mayer, T. S. & Werner, D. H. Hybrid metamaterials for electrically triggered multifunctional control. Nat. Commun. 7, 13236 (2016).

    Article  CAS  Google Scholar 

  18. Dong, W. et al. Tunable mid-infrared phase-change metasurface. Adv. Opt. Mater. 6, 1701346 (2018).

    Article  Google Scholar 

  19. Yin, X. et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light.: Sci. Appl. 6, e17016 (2017).

    Article  CAS  Google Scholar 

  20. Tian, J. et al. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nat. Commun. 10, 396 (2019).

    Article  Google Scholar 

  21. Pogrebnyakov, A. V. et al. Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material. Opt. Mater. Express 8, 2264 (2018).

    Article  CAS  Google Scholar 

  22. Leitis, A. et al. All‐dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater. 30, 1910259 (2020).

    Article  CAS  Google Scholar 

  23. Ruiz De Galarreta, C. et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica 7, 476–484 (2020).

    Article  Google Scholar 

  24. Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2016).

    Article  CAS  Google Scholar 

  25. Gholipour, B., Zhang, J., MacDonald, K. F., Hewak, D. W. & Zheludev, N. I. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater. 25, 3050–3054 (2013).

    Article  CAS  Google Scholar 

  26. Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 11, 465–476 (2017).

    Article  CAS  Google Scholar 

  27. Shalaginov, M. Y. et al. Reconfigurable all-dielectric metalens with diffraction limited performance. Nat. Commun. 12, 1225 (2021).

    Article  CAS  Google Scholar 

  28. An, S. et al. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics 6, 3196–3207 (2019).

    Article  CAS  Google Scholar 

  29. Cao, T. et al. Tuneable thermal emission using chalcogenide metasurface. Adv. Opt. Mater. 6, 1800169 (2018).

    Article  Google Scholar 

  30. Williams, C., Hong, N., Julian, M., Borg, S. & Kim, H. J. Tunable mid-wave infrared Fabry-Perot bandpass filters using phase-change GeSbTe. Opt. Express 28, 10583 (2020).

    Article  Google Scholar 

  31. Tittl, A. et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 27, 4597–4603 (2015).

    Article  CAS  Google Scholar 

  32. Carrillo, S. G.-C., Alexeev, A. M., Au, Y.-Y. & Wright, C. D. Reconfigurable phase-change meta-absorbers with on-demand quality factor control. Opt. Express 26, 25567 (2018).

    Article  CAS  Google Scholar 

  33. Gholipour, B., Piccinotti, D., Karvounis, A., MacDonald, K. F. & Zheludev, N. I. Reconfigurable ultraviolet and high-energy visible dielectric metamaterials. Nano Lett. 19, 1643–1648 (2019).

    Article  CAS  Google Scholar 

  34. Michel, A. U. et al. Advanced optical programming of individual meta-atoms beyond the effective medium approach. Adv. Mater. 31, 1901033 (2019).

    Article  Google Scholar 

  35. Zhang, Y. et al. Broadband transparent optical phase change materials. In Proc. Conf. Lasers and Electro-Optics paper JTh5C.4 (OSA Publishing, 2017); https://doi.org/10.1364/CLEO_AT.2017.JTh5C.4

  36. Zhang, Q. et al. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Opt. Lett. 43, 94 (2018).

    Article  CAS  Google Scholar 

  37. Zhang, Y. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 10, 4279 (2019).

    Article  Google Scholar 

  38. Li, X. et al. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica 6, 1 (2019).

    Article  Google Scholar 

  39. Rios, C. et al. Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics. Opt. Mater. Express 8, 2455 (2018).

    Article  CAS  Google Scholar 

  40. Wu, C. et al. Low-loss integrated photonic switch using subwavelength patterned phase change material. ACS Photonics 6, 87–92 (2018).

    Article  Google Scholar 

  41. Zheng, J. et al. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Opt. Mater. Express 8, 1551 (2018).

    Article  CAS  Google Scholar 

  42. Lee, S.-Y. et al. Holographic image generation with a thin-film resonance caused by chalcogenide phase-change material. Sci. Rep. 7, 41152 (2017).

    Article  CAS  Google Scholar 

  43. Dong, W. et al. Wide bandgap phase change material tuned visible photonics. Adv. Funct. Mater. 29, 1806181 (2019).

    Article  Google Scholar 

  44. Ríos, C. et al. Multi-level electro-thermal switching of optical phase-change materials using graphene. Adv. Photonics Res. 2, 2000034 (2021).

    Article  Google Scholar 

  45. Orava, J., Greer, A. L., Gholipour, B., Hewak, D. W. & Smith, C. E. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 11, 279–283 (2012).

    Article  CAS  Google Scholar 

  46. Zhang, L. et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun. 9, 1481 (2018).

    Article  Google Scholar 

  47. An, S. et al. Deep learning modeling approach for metasurfaces with high degrees of freedom. Opt. Express 28, 31932 (2020).

    Article  CAS  Google Scholar 

  48. Zheng, J. et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater. 2001218, 2001218 (2020).

    Article  Google Scholar 

  49. Zhang, H. et al. Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material. Sci. Bull. 64, 782–789 (2019).

    Article  CAS  Google Scholar 

  50. Wang, Y. et al. Electrical tuning of phase change antennas and metasurfaces. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-00882-8 (2020).

  51. Petit, L. et al. Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses. J. Solid State Chem. 182, 2756–2761 (2009).

    Article  CAS  Google Scholar 

  52. Hu, J. et al. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt. Express 15, 2307 (2007).

    Article  CAS  Google Scholar 

  53. Musgraves, J. D. et al. Comparison of the optical, thermal and structural properties of Ge-Sb-S thin films deposited using thermal evaporation and pulsed laser deposition techniques. Acta Mater. 59, 5032–5039 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Defense Advanced Research Projects Agency Defense Sciences Office Program: EXTREME Optics and Imaging (EXTREME) under agreement no. HR00111720029, and by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract nos. FA8721-05-C-0002 and/or FA8702-15-D-0001. We also acknowledge characterization facility support provided by the Materials Research Laboratory at Massachusetts Institute of Technology (MIT), as well as fabrication facility support by the Microsystems Technology Laboratories at MIT and Harvard University Center for Nanoscale Systems. The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the US Government. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Assistant Secretary of Defense for Research and Engineering.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. performed material deposition, device design and metasurface characterization. Y.Z. and J.L. fabricated the metasurfaces and conducted device characterization. C.F. conceived and designed the Huygens’ surface. B.A., M.Y.S., S.D.-J. and C.R. assisted in device characterization. S.A. helped with device modelling. J.B.C., C.M.R. and V.L. measured the multi-state metasurfaces. M.K. prepared the bulk materials. T.G., C.R.-B., K.A.R., H.Z. and J.H. supervised the research. All authors contributed to technical discussions and writing the paper.

Corresponding authors

Correspondence to Hualiang Zhang or Juejun Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Alex Krasnok, Ho Wai Howard Lee and Jinghua Teng for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Discussion and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Fowler, C., Liang, J. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 16, 661–666 (2021). https://doi.org/10.1038/s41565-021-00881-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00881-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing