Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conformable hierarchically engineered polymeric micromeshes enabling combinatorial therapies in brain tumours


The poor transport of molecular and nanoscale agents through the blood–brain barrier together with tumour heterogeneity contribute to the dismal prognosis in patients with glioblastoma multiforme. Here, a biodegradable implant (μMESH) is engineered in the form of a micrometre-sized poly(lactic-co-glycolic acid) mesh laid over a water-soluble poly(vinyl alcohol) layer. Upon poly(vinyl alcohol) dissolution, the flexible poly(lactic-co-glycolic acid) mesh conforms to the resected tumour cavity as docetaxel-loaded nanomedicines and diclofenac molecules are continuously and directly released into the adjacent tumour bed. In orthotopic brain cancer models, generated with a conventional, reference cell line and patient-derived cells, a single μMESH application, carrying 0.75 mg kg−1 of docetaxel and diclofenac, abrogates disease recurrence up to eight months after tumour resection, with no appreciable adverse effects. Without tumour resection, the μMESH increases the median overall survival (30 d) as compared with the one-time intracranial deposition of docetaxel-loaded nanomedicines (15 d) or 10 cycles of systemically administered temozolomide (12 d). The μMESH modular structure, for the independent coloading of different molecules and nanomedicines, together with its mechanical flexibility, can be exploited to treat a variety of cancers, realizing patient-specific dosing and interventions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Fabrication and hierarchical structure of the μMESH.
Fig. 2: In vitro functional characterization of the µMESH.
Fig. 3: In vitro pharmacological activity of the µMESH.
Fig. 4: Tissue transport performance of µMESH-released nanoparticles.
Fig. 5: Preclinical therapeutic efficacy of the µMESH.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Delgado-Lopez, P. D. & Corrales-Garcia, E. M. Survival in glioblastoma: a review on the impact of treatment modalities. Clin. Transl. Oncol. 18, 1062–1071 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Omuro, A. & DeAngelis, L. M. Glioblastoma and other malignant gliomas: a clinical review. JAMA 310, 1842–1850 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Stupp, R. et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 314, 2535–2543 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Delgado‐Martín, B. & Medina, M. Á. Advances in the knowledge of the molecular biology of glioblastoma and its impact in patient diagnosis, stratification, and treatment. Adv. Sci. 7, 1902971 (2020).

    Article  CAS  Google Scholar 

  5. 5.

    Jackson, C. M., Choi, J. & Lim, M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat. Immunol. 20, 1100–1109 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    Aldape, K. et al. Challenges to curing primary brain tumours. Nat. Rev. Clin. Oncol. 16, 509–520 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    Giese, A., Bjerkvig, R., Berens, M. E. & Westphal, M. Cost of migration: invasion of malignant gliomas and implications for treatment. J. Clin. Oncol. 21, 1624–1636 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7, 392–401 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    Lemee, J. M., Clavreul, A. & Menei, P. Intratumoral heterogeneity in glioblastoma: don’t forget the peritumoral brain zone. Neuro-Oncol. 17, 1322–1332 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    D’Amico, R. S., Englander, Z. K., Canoll, P. & Bruce, J. N. Extent of resection in glioma—a review of the cutting edge. World Neurosurg. 103, 538–549 (2017).

    Article  Google Scholar 

  12. 12.

    Tanaka, S., Louis, D. N., Curry, W. T., Batchelor, T. T. & Dietrich, J. Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? Nat. Rev. Clin. Oncol. 10, 14–26 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Ballabh, P., Braun, A. & Nedergaard, M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis. 16, 1–13 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    Lesniak, M. S. & Brem, H. Targeted therapy for brain tumours. Nat. Rev. Drug Discov. 3, 499–508 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).

    CAS  Article  Google Scholar 

  16. 16.

    The Cancer Genome Atlas Research Network Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

    Article  CAS  Google Scholar 

  17. 17.

    Network, T. C. Corrigendum: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 494, 506 (2013).

    Article  CAS  Google Scholar 

  18. 18.

    Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Wang, Q. et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 33, 152 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Osuka, S. & Van Meir, E. G. Overcoming therapeutic resistance in glioblastoma: the way forward. J. Clin. Investig. 127, 415–426 (2017).

    Article  Google Scholar 

  21. 21.

    Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Lee, A. et al. Spherical polymeric nanoconstructs for combined chemotherapeutic and anti-inflammatory therapies. Nanomedicine 12, 2139–2147 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Lam, F. C. et al. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat. Commun. 9, 1991 (2018).

  25. 25.

    Tamborini, M. et al. A combined approach employing chlorotoxin-nanovectors and low dose radiation to reach infiltrating tumor niches in glioblastoma. ACS Nano 10, 2509–2520 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Prados, M. D. et al. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J. Clin. Oncol. 27, 579–584 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    Samal, J., Rebelo, A. L. & Pandit, A. A window into the brain: tools to assess pre-clinical efficacy of biomaterials-based therapies on central nervous system disorders. Adv. Drug Deliv. Rev. 148, 68–145 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Randall, E. C. et al. Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nat. Commun. 9, 4904 (2018).

    Article  CAS  Google Scholar 

  29. 29.

    Foley, C. P. et al. Intra-arterial delivery of AAV vectors to the mouse brain after mannitol mediated blood brain barrier disruption. J. Control. Release 196, 71–78 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Zou, Y. et al. Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine. Adv. Mater. 30, e1803717 (2018).

    Article  CAS  Google Scholar 

  31. 31.

    Timbie, K. F., Mead, B. P. & Price, R. J. Drug and gene delivery across the blood–brain barrier with focused ultrasound. J. Control. Release 219, 61–75 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Aryal, M., Arvanitis, C. D., Alexander, P. M. & McDannold, N. Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Adv. Drug Deliv. Rev. 72, 94–109 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    May, J. N. et al. Multimodal and multiscale optical imaging of nanomedicine delivery across the blood–brain barrier upon sonopermeation. Theranostics 10, 1948–1959 (2020).

    CAS  Article  Google Scholar 

  34. 34.

    Johnsen, K. B. et al. Modulating the antibody density changes the uptake and transport at the blood–brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J. Control. Release 295, 237–249 (2019).

    CAS  Article  Google Scholar 

  35. 35.

    Lajoie, J. M. & Shusta, E. V. Targeting receptor-mediated transport for delivery of biologics across the blood–brain barrier. Annu. Rev. Pharmacol. Toxicol. 55, 613–631 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Bu, L. L. et al. Advances in drug delivery for post-surgical cancer treatment. Biomaterials 219, 119182 (2019).

    CAS  Article  Google Scholar 

  37. 37.

    Vogelbaum, M. A. & Aghi, M. K. Convection-enhanced delivery for the treatment of glioblastoma. Neuro-Oncol. 17, ii3–ii8 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Brem, H. et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 345, 1008–1012 (1995).

    CAS  Article  Google Scholar 

  39. 39.

    Bota, D. A., Desjardins, A., Quinn, J. A., Affronti, M. L. & Friedman, H. S. Interstitial chemotherapy with biodegradable BCNU (Gliadel) wafers in the treatment of malignant gliomas. Ther. Clin. Risk Manag. 3, 707–715 (2007).

    CAS  Google Scholar 

  40. 40.

    Shapira-Furman, T. et al. Biodegradable wafers releasing temozolomide and carmustine for the treatment of brain cancer. J. Control. Release 295, 93–101 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    Song, E. et al. Surface chemistry governs cellular tropism of nanoparticles in the brain. Nat. Commun. 8, 15322 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Jahangiri, A. et al. Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J. Neurosurg. 126, 191–200 (2017).

    Article  Google Scholar 

  43. 43.

    Conde, J., Oliva, N., Zhang, Y. & Artzi, N. Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model. Nat. Mater. 15, 1128–1138 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    Talebian, S. et al. Biopolymers for antitumor implantable drug delivery systems: recent advances and future outlook. Adv. Mater. 30, e1706665 (2018).

    Article  CAS  Google Scholar 

  45. 45.

    Jain, A. et al. Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. Nat. Mater. 13, 308–316 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    Hosseinzadeh, R. et al. A drug‐eluting 3D‐printed mesh (GlioMesh) for management of glioblastoma. Adv. Ther. 2, 1900113 (2019).

    CAS  Article  Google Scholar 

  47. 47.

    Han, D. et al. Multi-layered core–sheath fiber membranes for controlled drug release in the local treatment of brain tumor. Sci. Rep. 9, 17936 (2019).

  48. 48.

    Ramachandran, R. et al. Theranostic 3-dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Sci. Rep. 7, 43271 (2017).

    Article  Google Scholar 

  49. 49.

    Wang, C. et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 10, eaan3682 (2018).

  50. 50.

    Wang, T. et al. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nat. Commun. 9, 1532 (2018).

    Article  CAS  Google Scholar 

  51. 51.

    Lee, J. et al. Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat. Commun. 10, 5205 (2019).

    Article  CAS  Google Scholar 

  52. 52.

    Theruvath, J. et al. Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nat. Med. 26, 712–719 (2020).

  53. 53.

    Donovan, L. K. et al. Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nat. Med. 26, 720–731 (2020).

  54. 54.

    Sahoo, S. K., Panyam, J., Prabha, S. & Labhasetwar, V. Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Release 82, 105–114 (2002).

    CAS  Article  Google Scholar 

  55. 55.

    Zweers, M. L., Engbers, G. H., Grijpma, D. W. & Feijen, J. In vitro degradation of nanoparticles prepared from polymers based on dl-lactide, glycolide and poly(ethylene oxide). J. Control. Release 100, 347–356 (2004).

    CAS  Article  Google Scholar 

  56. 56.

    Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    CAS  Article  Google Scholar 

  57. 57.

    Dancy, J. G. et al. Non-specific binding and steric hindrance thresholds for penetration of particulate drug carriers within tumor tissue. J. Control. Release 238, 139–148 (2016).

    CAS  Article  Google Scholar 

  58. 58.

    Kalb, E. & Engel, J. Binding and calcium-induced aggregation of laminin onto lipid bilayers. J. Biol. Chem. 266, 19047–19052 (1991).

    CAS  Article  Google Scholar 

  59. 59.

    Wong, C. et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl Acad. Sci. USA 108, 2426–2431 (2011).

    CAS  Article  Google Scholar 

  60. 60.

    Narayanan, A. et al. The proneural gene ASCL1 governs the transcriptional subgroup affiliation in glioblastoma stem cells by directly repressing the mesenchymal gene NDRG1. Cell Death Differ. 26, 1813–1831 (2019).

    CAS  Article  Google Scholar 

Download references


This project was partially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 616695–POTENT (P.D.), and by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement 754490–MINDED (P.D.). We thank the laboratory of D. De Pietri Tonelli for providing the U-87 MG GFP+ cells. We thank the Clean Room Facility in IIT and M. Francardi. P.D. and G.A.G. are grateful to Professor Sanjiv Sam Gambhir of Stanford University for catalysing and supporting the collaboration between their laboratories. We dedicate this work to the memory and legacy of Professor Sanjiv Sam Gambhir, who passed away on 18 June 2020.

Author information




D.D.M. and P.D. conceived the idea and designed the experiments. D.D.M. realized all the different platforms used, performed all the in vitro experiments, acquired optical and electron microscopy images, analysed all the data and performed statistical analyses. A.L.P. performed all the in vivo experiments. R.P. conducted the histological analyses and sample preparation. F.M. helped in the realization of the orthotopic tumour models. T.C. prepared samples for CLEM study. F.P. and R.S. helped with the in vivo experiments. A.L.G. and R.G. provided patient-derived GBM cells, transfected the cells with Luc+ and helped in developing the tumour model, and A.L.G. helped with cell inoculation. M.F. synthesized lipid-Cy5. R.M. performed cryo-EM analyses. A.A. performed liquid chromatography–mass spectrometry analyses. C.W. and G.A.G. performed time-course penetration experiments with µSPNs. D.D.M., P.D. and A.L.P. wrote the manuscript. P.D. supervised the whole project.

Corresponding author

Correspondence to Paolo Decuzzi.

Ethics declarations

Competing interests

D.D.M. and P.D. are the coinventors on the pending patent WO2019193524A1—‘An implantable device for localized drug delivery, uses thereof and a manufacturing method thereof’ filed by the Fondazione Istituto Italiano di Tecnologia. The remaining authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Manish Aghi, Ravi Bellamkonda and Abhay Pandit for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, Results and Discussion, and Figs. 1–40.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Mascolo, D., Palange, A.L., Primavera, R. et al. Conformable hierarchically engineered polymeric micromeshes enabling combinatorial therapies in brain tumours. Nat. Nanotechnol. (2021).

Download citation


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research