Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultra-high-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects


Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimetre spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high-intensity UHF-RF-acoustic signals. Compared with concentration-matched iron oxide nanoparticles, our nanodroplets produce at least 1,600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), and show that targeting specificity is increased by more than 2-fold compared with untargeted nanodroplets or prostate cancer cells not expressing this receptor.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental concept.
Fig. 2: Preparation of UHF-RF-acoustic contrast agents with engineered saline nanodroplets.
Fig. 3: In vitro contrast-enhanced UHF-RF-acoustic imaging.
Fig. 4: GRPR-targeted nanodroplets showed specific targeting to prostate cancer cells and low toxicity in cell culture.
Fig. 5: In vivo UHF-RF-acoustic molecular imaging using targeted nanodroplets.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. Gambhir, S. S., Ge, T. J., Vermesh, O. & Spitler, R. Toward achieving precision health. Sci. Transl. Med. 10, eaao3612 (2018).

    Article  Google Scholar 

  2. Hamilton, W., Walter, F. M., Rubin, G. & Neal, R. D. Improving early diagnosis of symptomatic cancer. Nat. Rev. Clin. Oncol. 13, 740–749 (2016).

    Article  Google Scholar 

  3. Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2, 683–693 (2002).

    Article  CAS  Google Scholar 

  4. Weissleder, R. Molecular imaging in cancer. Science 312, 1168–1171 (2006).

    Article  CAS  Google Scholar 

  5. Weissleder, R. & Mahmood, U. Molecular imaging. Radiology 219, 316–333 (2001).

    Article  CAS  Google Scholar 

  6. Hussain, T. & Nguyen, Q. T. Molecular imaging for cancer diagnosis and surgery. Adv. Drug Deliv. Rev. 66, 90–100 (2014).

    Article  CAS  Google Scholar 

  7. Willmann, J. K., van Bruggen, N., Dinkelborg, L. M. & Gambhir, S. S. Molecular imaging in drug development. Nat. Rev. Drug Discov. 7, 591–607 (2008).

    Article  CAS  Google Scholar 

  8. Pysz, M. A., Gambhir, S. S. & Willmann, J. K. Molecular imaging: current status and emerging strategies. Clin. Radiol. 65, 500–516 (2010).

    Article  CAS  Google Scholar 

  9. Lin, E. C. Radiation risk from medical imaging. Mayo Clin. Proc. 85, 1142–1146 (2010).

    Article  Google Scholar 

  10. James, M. L. & Gambhir, S. S. A molecular imaging primer: modalities, imaging agents, and applications. Physiological Rev. 92, 897–965 (2012).

    Article  CAS  Google Scholar 

  11. Loskutova, K., Grishenkov, D. & Ghorbani, M. Review on acoustic droplet vaporization in ultrasound diagnostics and therapeutics. BioMed. Res. Int. 2019, 9480193 (2019).

    Article  Google Scholar 

  12. Jokerst, J. V. & Gambhir, S. S. Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 44, 1050–1060 (2011).

    Article  CAS  Google Scholar 

  13. Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 13, 639–650 (2016).

    Article  CAS  Google Scholar 

  14. Bowen, T. in Proc. 1981 IEEE Ultrasonics Symposium 817–822 (IEEE, 1981).

  15. Kruger, R. A. et al. Thermoacoustic CT with radio waves: a medical imaging paradigm. Radiology 211, 275–278 (1999).

    Article  CAS  Google Scholar 

  16. Ku, G. et al. Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging. Technol. Cancer Res. Treat. 4, 559–565 (2005).

    Article  Google Scholar 

  17. Kruger, R. A., Reinecke, D. R. & Kruger, G. A. Thermoacoustic computed tomography—technical considerations. Med. Phys. 26, 1832–1837 (1999).

    Article  CAS  Google Scholar 

  18. Wen, L. W., Yang, S. H., Zhong, J. P., Zhou, Q. & Xing, D. Thermoacoustic imaging and therapy guidance based on ultra-short pulsed microwave pumped thermoelastic effect induced with superparamagnetic iron oxide nanoparticles. Theranostics 7, 1976–1989 (2017).

    Article  CAS  Google Scholar 

  19. Kruger, R. A. et al. Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz—feasibility study. Radiology 216, 279–283 (2000).

    Article  CAS  Google Scholar 

  20. Omar, M., Kellnberger, S., Sergiadis, G., Razansky, D. & Ntziachristos, V. Near-field thermoacoustic imaging with transmission line pulsers. Med. Phys. 39, 4460–4466 (2012).

    Article  Google Scholar 

  21. Laqua, D., Just, T. & Husar, P. in Proc. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1437–1440 (IEEE, 2010).

  22. Ogunlade, O. & Beard, P. Exogenous contrast agents for thermoacoustic imaging: an investigation into the underlying sources of contrast. Med. Phys. 42, 170–181 (2016).

    Article  Google Scholar 

  23. Byrd, D., Hanson, G.W. & Patch, S.K. in Proc. SPIE 7564, Photons Plus Ultrasound: Imaging and Sensing 2010, 756417 (SPIE, 2010).

  24. Wu, D., Huang, L., Jiang, M. S. & Jiang, H. Contrast agents for photoacoustic and thermoacoustic imaging: a review. Int. J. Mol. Sci. 15, 23616 (2014).

    Article  Google Scholar 

  25. Nie, L., Ou, Z., Yang, S. & Xing, D. Thermoacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection. Med. Phys. 37, 4193–4200 (2010).

    Article  CAS  Google Scholar 

  26. Tamarov, K. et al. Electrolytic conductivity-related radiofrequency heating of aqueous suspensions of nanoparticles for biomedicine. Phys. Chem. Chem. Phys. 19, 11510–11517 (2017).

    Article  CAS  Google Scholar 

  27. Weast, R.C. CRC Handbook of Chemistry and Physics 70th edn (CRC Press, 1989).

  28. Wolf, A. V. Aqueous Solutions and Body Fluids (Harper & Row, 1966).

    Google Scholar 

  29. Engel, R. H., Riggi, S. J. & Fahrenbach, M. J. Insulin: intestinal absorption as water-in-oil-in-water emulsions. Nature 219, 856–857 (1968).

    Article  CAS  Google Scholar 

  30. Gresham, P. A., Barnett, M., Smith, S. V. & Schneider, R. Use of a sustained-release multiple emulsion to extend the period of radioprotection conferred by cysteamine. Nature 234, 149 (1971).

    Article  CAS  Google Scholar 

  31. Garti, N. & Bisperink, C. Double emulsions: progress and applications. Curr. Opin. Colloid Interface Sci. 3, 657–667 (1998).

    Article  CAS  Google Scholar 

  32. Muschiolik, G. Multiple emulsions for food use. Curr. Opin. Colloid Interface Sci. 12, 213–220 (2007).

    Article  CAS  Google Scholar 

  33. Chong, D. et al. Advances in fabricating double-emulsion droplets and their biomedical applications. Microfluidics Nanofluidics 19, 1071–1090 (2015).

    Article  CAS  Google Scholar 

  34. Chen, L. et al. Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch. Adv. Optical Mater. 2, 845–848 (2014).

    Article  CAS  Google Scholar 

  35. Mezzenga, R., Folmer, B. M. & Hughes, E. Design of double emulsions by osmotic pressure tailoring. Langmuir 20, 3574–3582 (2004).

    Article  CAS  Google Scholar 

  36. Wen, L. & Papadopoulos, K. D. Effects of osmotic pressure on water transport in W1/O/W2 emulsions. J. Colloid Interface Sci. 235, 398–404 (2001).

    Article  CAS  Google Scholar 

  37. Atzberger, P. J. & Kramer, P. R. Theoretical framework for microscopic osmotic phenomena. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 061125 (2007).

    Article  Google Scholar 

  38. Freire, M. G., Dias, A. M. A., Coelho, M. A. Z., Coutinho, J. A. P. & Marrucho, I. M. Aging mechanisms of perfluorocarbon emulsions using image analysis. J. Colloid Interface Sci. 286, 224–232 (2005).

    Article  CAS  Google Scholar 

  39. Hilder, M. H. The solubility of water in edible oils and fats. J. Am. Oil Chem. Soc. 45, 703–707 (1968).

    Article  CAS  Google Scholar 

  40. Freire, M. G., Gomes, L., Santos, L. M., Marrucho, I. M. & Coutinho, J. A. Water solubility in linear fluoroalkanes used in blood substitute formulations. J. Phys. Chem. B 110, 22923–22929 (2006).

    Article  CAS  Google Scholar 

  41. Rotariu, G., Fraga, D. & Hildebrand, J. The solubility of water in normal perfluoroheptane. J. Am. Chem. Soc. 75, 6357–6357 (1953).

    Article  Google Scholar 

  42. Shpak, O. et al. Acoustic droplet vaporization is initiated by superharmonic focusing. Proc. Natl Acad. Sci. USA 111, 1697–1702 (2014).

    Article  CAS  Google Scholar 

  43. Vernikouskaya, I., Pochert, A., Lindén, M. & Rasche, V. Quantitative 19F MRI of perfluoro-15-crown-5-ether using uniformity correction of the spin excitation and signal reception. Magn. Reson. Mater. Phys., Biol. Med. 32, 25–36 (2019).

    Article  CAS  Google Scholar 

  44. Tran, T. D. et al. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int. J. Nanomed. 2, 515–526 (2007).

    CAS  Google Scholar 

  45. Joseph, G. M. & Noah, W. Poloxamer 188 (P188) as a membrane resealing reagent in biomedical applications. Recent Pat. Biotechnol. 6, 200–211 (2012).

    Article  Google Scholar 

  46. Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

    Article  Google Scholar 

  47. Sakai, T., Kamogawa, K., Nishiyama, K., Sakai, H. & Abe, M. Molecular diffusion of oil/water emulsions in surfactant-free conditions. Langmuir 18, 1985–1990 (2002).

    Article  CAS  Google Scholar 

  48. Doinikov, A. A., Sheeran, P. S., Bouakaz, A. & Dayton, P. A. Vaporization dynamics of volatile perfluorocarbon droplets: a theoretical model and in vitro validation. Med. Phys. 41, 102901 (2014).

    Article  Google Scholar 

  49. Pitt, W. G., Singh, R. N., Perez, K. X., Husseini, G. A. & Jack, D. R. Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model. Ultrason. Sonochem. 21, 879–891 (2014).

    Article  CAS  Google Scholar 

  50. Cornelio, D. B., Roesler, R. & Schwartsmann, G. Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann. Oncol. 18, 1457–1466 (2007).

    Article  CAS  Google Scholar 

Download references


This work was supported in part by grants from NCI CCNE-TD U54 CA199075-04 (S.S.G.), The Canary Foundation (S.S.G.), The Sir Peter Michael Foundation (S.S.G.), Stanford’s Catalyst for Collaborative Solutions (J.D. and S.S.G.), Google Faculty Research Award (Y.-S.C.), The Jump ARCHES endowment through the Health Care Engineering Systems Center (Y.-S.C.), and NIGMS 1R21GM139022-01 (Y.Z.). The authors acknowledge the Stanford Center for Innovation in In Vivo Imaging (SCI3) for assistance with animal imaging and C. Chan for providing insightful discussions. This paper is dedicated to the memory of Dr Sanjiv Sam Gambhir.

Author information

Authors and Affiliations



S.S.G. conceived the original idea. Y.-S.C. and S.S.G. designed the experiments. Y.-S.C. developed the contrast agents and performed the in vitro and in vivo imaging. C.B., A.Z. and F.A. assisted in the in vivo experiments. Y.-S.C., Y.Z. and H.W. performed the theoretical study. D.-H.C. contributed to cryo-electron microscopy. C.B., A.Z., E.-C.H., F.A., T.S. and J.D. contributed to the discussion of the data and experimental results. Y.-S.C. and S.S.G. drafted the manuscript and all authors contributed to the writing of the manuscript. S.S.G. supervised the entire study.

Corresponding author

Correspondence to Yun-Sheng Chen.

Ethics declarations

Competing interests

S.S.G. declared competing financial interests with Endra Inc and Visualsonics Inc.

Additional information

Peer review information Nature Nanotechnology thanks F. Kiessling, N. van den Berg and M. Tang for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussions, methods, Figs. 1–16 and Tables 1 and 2.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, YS., Zhao, Y., Beinat, C. et al. Ultra-high-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects. Nat. Nanotechnol. 16, 717–724 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research