Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Current understanding of biological identity at the nanoscale and future prospects


Nanoscale objects are processed by living organisms using highly evolved and sophisticated endogenous cellular networks, specifically designed to manage objects of this size. While these processes potentially allow nanostructures unique access to and control over key biological machineries, they are also highly protected by cell or host defence mechanisms at all levels. A thorough understanding of bionanoscale recognition events, including the molecules involved in the cell recognition machinery, the nature of information transferred during recognition processes and the coupled downstream cellular processing, would allow us to achieve a qualitatively novel form of biological control and advanced therapeutics. Here we discuss evolving fundamental microscopic and mechanistic understanding of biological nanoscale recognition. We consider the interface between a nanostructure and a target cell membrane, outlining the categories of nanostructure properties that are recognized, and the associated nanoscale signal transduction and cellular programming mechanisms that constitute biological recognition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Formation of the bionanoscale synapse.
Fig. 2: The hard and soft biomolecular corona paradigm in nanoscale recognition.
Fig. 3: Nanoscale mapping determines the composition and spatial distribution of recognition motifs on a particle-by-particle basis.
Fig. 4: Recognition from the cell perspective.


  1. 1.

    Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    Lynch, I., Salvati, A. & Dawson, K. A. What does the cell see? Nat. Nanotechnol. 4, 546–547 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Puri, P. L. et al. A myogenic differentiation checkpoint activated by genotoxic stress. Nat. Genet. 32, 585–593 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    Old foes and new enemies. Nat. Immunol. 19, 1147 (2018).

  6. 6.

    Maeda, H. & Khatami, M. Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin. Transl. Med. 7, e11 (2018).

  7. 7.

    Lin, A. et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 11, eaaw8412 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    Rosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018).

    Article  CAS  Google Scholar 

  9. 9.

    Papoian, T. et al. Secondary pharmacology data to assess potential off-target activity of new drugs: a regulatory perspective. Nat. Rev. Drug Discov. 14, 294–294 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Cao, X.-Z., Merlitz, H., Wu, C.-X., Egorov, S. A. & Sommer, J.-U. Effective pair potentials between nanoparticles induced by single monomers and polymer chains. Soft Matter 9, 5916–5926 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Dawson, K. A. The glass paradigm for colloidal glasses, gels, and other arrested states driven by attractive interactions. Curr. Opin. Colloid Interface Sci. 7, 218–227 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    Huang, K. & Szlufarska, I. Effect of interfaces on the nearby Brownian motion. Nat. Commun. 6, 8558 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Lara, S. et al. Differential recognition of nanoparticle protein corona and modified low-density lipoprotein by macrophage receptor with collagenous structure. ACS Nano 12, 4930–4937 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Sieben, C. et al. Influenza virus binds its host cell using multiple dynamic interactions. Proc. Natl Acad. Sci. USA 109, 13626–13631 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    CAS  Article  Google Scholar 

  16. 16.

    Curk, T., Dobnikar, J. & Frenkel, D. Optimal multivalent targeting of membranes with many distinct receptors. Proc. Natl Acad. Sci. USA 114, 7210 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Blaszczyk, M., Harmer, N. J., Chirgadze, D. Y., Ascher, D. B. & Blundell, T. L. Achieving high signal-to-noise in cell regulatory systems: spatial organization of multiprotein transmembrane assemblies of FGFR and MET receptors. Prog. Biophys. Mol. Biol. 118, 103–111 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Bicknell, B. A., Dayan, P. & Goodhill, G. J. The limits of chemosensation vary across dimensions. Nat. Commun. 6, 7468 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Adami, C. What is information? Philos. Trans. A 374, 20150230 (2016).

    Article  CAS  Google Scholar 

  20. 20.

    Tsimring, L. S. Noise in biology. Rep. Prog. Phys. 77, 026601 (2014).

    Article  CAS  Google Scholar 

  21. 21.

    Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA 99, 12795–12800 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    Lestas, I., Vinnicombe, G. & Paulsson, J. Fundamental limits on the suppression of molecular fluctuations. Nature 467, 174–178 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Dustin, M. L. The immunological synapse. Cancer Immunol. Res. 2, 1023 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Fooksman, D. R. et al. Functional anatomy of T cell activation and synapse formation. Annu. Rev. Immunol. 28, 79–105 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    Kuokkanen, E., Šuštar, V. & Mattila, P. K. Molecular control of B cell activation and immunological synapse formation. Traffic 16, 311–326 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Dustin, M. L. What counts in the immunological synapse? Mol. Cell 54, 255–262 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Igakura, T. et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299, 1713 (2003).

    CAS  Article  Google Scholar 

  28. 28.

    Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Weil, K. G. J. S., Rowlinson & Widom, B. Molecular Theory of Capillarity, Clarendon Press, Oxford 1982. 327 Seiten, Preis: £ 30,–. Ber. Bunsenges. Phys. Chem. 88, 586–586 (1984).

    Article  Google Scholar 

  30. 30.

    Milani, S. et al. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6, 2532–2541 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Monopoli, M. P. et al. Physical−chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133, 2525–2534 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Treuel, L., Docter, D., Maskos, M. & Stauber, R. H. Protein corona—from molecular adsorption to physiological complexity. Beilstein J. Nanotechnol. 6, 857–873 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Bertoli, F., Garry, D., Monopoli, M. P., Salvati, A. & Dawson, K. A. The intracellular destiny of the protein corona: a study on its cellular internalization and evolution. ACS Nano 10, 10471–10479 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Lara, S. et al. Identification of receptor binding to the biomolecular corona of nanoparticles. ACS Nano 11, 1884–1893 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Röcker, C., Pötzl, M., Zhang, F., Parak, W. J. & Nienhaus, G. U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 4, 577–580 (2009).

    Article  CAS  Google Scholar 

  36. 36.

    Martinez-Moro, M., Di Silvio, D. & Moya, S. E. Fluorescence correlation spectroscopy as a tool for the study of the intracellular dynamics and biological fate of protein corona. Biophys. Chem. 253, 106218 (2019).

    CAS  Article  Google Scholar 

  37. 37.

    Hargett, A. A. & Renfrow, B. R. Glycosylation of viral surface proteins probed by mass spectrometry. Curr. Opin. Virol. 35, 56–66 (2019).

    Article  CAS  Google Scholar 

  38. 38.

    Kundu, S. K. et al. Relaxation dynamics of liposomes in an aqueous solution. Phys. Chem. Chem. Phys. 17, 18449–18455 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Sandin, P., Fitzpatrick, L. W., Simpson, J. C. & Dawson, K. A. High-speed imaging of Rab family small GTPases reveals rare events in nanoparticle trafficking in living cells. ACS Nano 6, 1513–1521 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Boselli, L. et al. Classification and biological identity of complex nano shapes. Commun. Mater. 1, 35 (2020).

  41. 41.

    Blume, J. E. et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat. Commun. 11, 3662 (2020).

    CAS  Article  Google Scholar 

  42. 42.

    Kelly, P. M. et al. Mapping protein binding sites on the biomolecular corona of nanoparticles. Nat. Nanotechnol. 10, 472–479 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Herda, L. M. et al. Mapping of molecular structure of the nanoscale surface in bionanoparticles. J. Am. Chem. Soc. 139, 111–114 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Lo Giudice, M. C., Herda, L. M., Polo, E. & Dawson, K. A. In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry. Nat. Commun. 7, 13475 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Mohammad-Beigi, H. et al. Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association. Nat. Commun. 11, 4535 (2020).

  46. 46.

    Lynch, I., Dawson, K. A. & Linse, S. Detecting cryptic epitopes created by nanoparticles. Sci. STKE 2006, pe14 (2006).

  47. 47.

    Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    CAS  Article  Google Scholar 

  48. 48.

    Bohnert, M. & Schuldiner, M. Stepping outside the comfort zone of membrane contact site research. Nat. Rev. Mol. Cell Biol. 19, 483–484 (2018).

    CAS  Article  Google Scholar 

  49. 49.

    Joshi, A. S., Zhang, H. & Prinz, W. A. Organelle biogenesis in the endoplasmic reticulum. Nat. Cell Biol. 19, 876–882 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Shpilka, T. & Haynes, C. M. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell Biol. 19, 109–120 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Fang, E. F. et al. Nuclear DNA damage signalling to mitochondria in ageing. Nat. Rev. Mol. Cell Biol. 17, 308–321 (2016).

    CAS  Article  Google Scholar 

  52. 52.

    Fehervari, Z. Building an immune synapse. Nat. Immunol. 13, 816 (2012).

    Google Scholar 

  53. 53.

    Casaletto, J. B. & McClatchey, A. I. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat. Rev. Cancer 12, 387–400 (2012).

    CAS  Article  Google Scholar 

  54. 54.

    Friedl, P., den Boer, A. T. & Gunzer, M. Tuning immune responses: diversity and adaptation of the immunological synapse. Nat. Rev. Immunol. 5, 532–545 (2005).

    CAS  Article  Google Scholar 

  55. 55.

    Wales, D., Saykally, R., Zewail, A. & King, D. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge University Press, 2003).

  56. 56.

    Amit, D. J. Modeling Brain Function: the World of Attractor Neural Networks (Cambridge University Press, 1989).

  57. 57.

    Baldassi, C., Pittorino, F. & Zecchina, R. Shaping the learning landscape in neural networks around wide flat minima. Proc. Natl Acad. Sci. USA 117, 161 (2020).

    CAS  Article  Google Scholar 

  58. 58.

    Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 1140 (2018).

    CAS  Article  Google Scholar 

Download references


K.A.D. and Y.Y. acknowledge that this publication has emanated from research supported in part by a grant from Science Foundation Ireland (17/NSFC/4898 (K.A.D.)), funding under Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment (2019KSYS008 (K.A.D.)) and grants from Science Foundation Ireland (15/SIRG/3423 (Y.Y.), 17/ERCD/4962 (K.A.D.) and 16/ENM-ERA/3457 (Y.Y.)). We would like to thank Yijun Jiang, Guangzhou Hongjun Scientific Co., Ltd, for creating the images in Figs. 1, 2, 3a,e,g,i,k and 4.

Author information



Corresponding authors

Correspondence to Kenneth A. Dawson or Yan Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Jie Zheng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Video 1

Live-cell imaging of nanoparticle–cell interactions. Cells in the exponential growth phase were seeded in a confocal dish 24 h before the imaging. After the cell membrane was stained with CellMask Orange, the cells were treated with fluorescein isothiocyanate-labelled polystyrene nanoparticles (100 nm in diameter). Subsequently, the cells were placed in a live-cell imaging chamber and imaged using spinning disc microscopy with a ×63 lens (oil immersion).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dawson, K.A., Yan, Y. Current understanding of biological identity at the nanoscale and future prospects. Nat. Nanotechnol. (2021).

Download citation


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research