Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Complete mapping of the thermoelectric properties of a single molecule


Theoretical studies suggest that mastering the thermocurrent through single molecules can lead to thermoelectric energy harvesters with unprecedentedly high efficiencies.1,2,3,4,5,6 This can be achieved by engineering molecule length,7 optimizing the tunnel coupling strength of molecules via chemical anchor groups8 or by creating localized states in the backbone with resulting quantum interference features.4 Empirical verification of these predictions, however, faces considerable experimental challenges and is still awaited. Here we use a novel measurement protocol that simultaneously probes the conductance and thermocurrent flow as a function of bias voltage and gate voltage. We find that the resulting thermocurrent is strongly asymmetric with respect to the gate voltage, with evidence of molecular excited states in the thermocurrent Coulomb diamond maps. These features can be reproduced by a rate-equation model only if it accounts for both the vibrational coupling and the electronic degeneracies, thus giving direct insight into the interplay of electronic and vibrational degrees of freedom, and the role of spin entropy in single molecules. Overall these results show that thermocurrent measurements can be used as a spectroscopic tool to access molecule-specific quantum transport phenomena.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The experimental system.
Fig. 2: Maps of electronic and thermoelectric properties.
Fig. 3: Comparison to theoretical model.
Fig. 4: Temperature dependence of the differential conductance.

Data availability

Data for the main text are available online at Any other supporting data can be made available upon request to the corresponding author.


  1. 1.

    Gehring, P., Thijssen, J. M. & van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 1, 381–396 (2019).

    Article  Google Scholar 

  2. 2.

    Park, S., Kang, H. & Yoon, H. J. Structure–thermopower relationships in molecular thermoelectrics. J. Mater. Chem. A 7, 14419–14446 (2019).

    CAS  Article  Google Scholar 

  3. 3.

    Koch, J., von Oppen, F., Oreg, Y. & Sela, E. Thermopower of single-molecule devices. Phys. Rev. B 70, 195107 (2004).

    Article  Google Scholar 

  4. 4.

    Lambert, C. J., Sadeghi, H. & Al-Galiby, Q. H. Quantum-interference-enhanced thermoelectricity in single molecules and molecular films. C. R. Phys. 17, 1084–1095 (2016).

    Article  Google Scholar 

  5. 5.

    Murphy, P., Mukerjee, S. & Moore, J. Optimal thermoelectric figure of merit of a molecular junction. Phys. Rev. B 78, 161406 (2008).

    Article  Google Scholar 

  6. 6.

    Agarwalla, B. K., Jiang, J.-H. & Segal, D. Thermoelectricity in molecular junctions with harmonic and anharmonic modes. Beilstein J. Nanotechnol. 6, 2129–2139 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Park, S., Kang, S. & Yoon, H. J. Power factor of one molecule thick films and length dependence. ACS Cent. Sci. 5, 1975–1982 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    Widawsky, J. R., Darancet, P., Neaton, J. B. & Venkataraman, L. Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett. 12, 354–358 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    Kim, Y., Jeong, W., Kim, K., Lee, W. & Reddy, P. Electrostatic control of thermoelectricity in molecular junctions. Nat. Nanotechnol. 9, 881–885 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Gehring, P. et al. Field-effect control of graphene–fullerene thermoelectric nanodevices. Nano Lett. 17, 7055–7061 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Harzheim, A. et al. Role of metallic leads and electronic degeneracies in thermoelectric power generation in quantum dots. Phys. Rev. Res. 2, 013140 (2020).

    CAS  Article  Google Scholar 

  12. 12.

    Rincón-García, L., Evangeli, C., Rubio-Bollinger, G. & Agraït, N. Thermopower measurements in molecular junctions. Chem. Soc. Rev. 45, 4285–4306 (2016).

    Article  Google Scholar 

  13. 13.

    O’Neill, K., Osorio, E. A. & van der Zant, H. S. J. Self-breaking in planar few-atom au constrictions for nanometer-spaced electrodes. Appl. Phys. Lett. 90, 133109 (2007).

    Article  Google Scholar 

  14. 14.

    Behnia, K. Fundamentals of Thermoelectricity (Oxford University Press, 2019).

  15. 15.

    Sowa, J. K., Mol, J. A., Briggs, G. A. D. & Gauger, E. M. Beyond Marcus theory and the Landauer–Büttiker approach in molecular junctions: a unified framework. J. Chem. Phys. 149, 154112 (2018).

    Article  Google Scholar 

  16. 16.

    Josefsson, M. et al. A quantum-dot heat engine operating close to the thermodynamic efficiency limits. Nat. Nanotechnol. 13, 920–924 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Kleeorin, Y. et al. How to measure the entropy of a mesoscopic system via thermoelectric transport. Nat. Commun. 10, 5801 (2019).

    CAS  Article  Google Scholar 

  18. 18.

    Viola, G., Das, S., Grosfeld, E. & Stern, A. Thermoelectric probe for neutral edge modes in the fractional quantum hall regime. Phys. Rev. Lett. 109, 146801 (2012).

    Article  Google Scholar 

  19. 19.

    Mazal, Y., Meir, Y. & Dubi, Y. Nonmonotonic thermoelectric currents and energy harvesting in interacting double quantum dots. Phys. Rev. B 99, 075433 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    Beenakker, C. Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646–1656 (1991).

    CAS  Article  Google Scholar 

  21. 21.

    Hartman, N. et al. Direct entropy measurement in a mesoscopic quantum system. Nat. Phys. 14, 1083–1086 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Cui, L., Miao, R., Jiang, C., Meyhofer, E. & Reddy, P. Perspective: thermal and thermoelectric transport in molecular junctions. J. Chem. Phys. 146, 092201 (2017).

    Article  Google Scholar 

  23. 23.

    Garner, M. H. et al. Comprehensive suppression of single-molecule conductance using destructive σ-interference. Nature 558, 415–419 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Cui, L. et al. Thermal conductance of single-molecule junctions. Nature 572, 628–633 (2019).

    CAS  Article  Google Scholar 

  25. 25.

    Ke, S.-H., Baranger, H. U. & Yang, W. Addition energies of fullerenes and carbon nanotubes as quantum dots: the role of symmetry. Phys. Rev. Lett. 91, 116803 (2003).

    Article  Google Scholar 

  26. 26.

    Sowa, J. K., Mol, J. A. & Gauger, E. M. Marcus theory of thermoelectricity in molecular junctions. J. Phys. Chem. C. 123, 4103–4108 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Evangelisti, M. et al. Cryogenic magnetocaloric effect in a ferromagnetic molecular dimer. Angew. Chem. Int. Ed. 50, 6606–6609 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Dugay, J. et al. Phase transitions in spin-crossover thin films probed by graphene transport measurements. Nano Lett. 17, 186–193 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    de Bruijckere, J. et al. Ground-state spin blockade in a single-molecule junction. Phys. Rev. Lett. 122, 197701 (2019).

    Article  Google Scholar 

  30. 30.

    Costi, T. A. Magnetic field dependence of the thermopower of Kondo-correlated quantum dots. Phys. Rev. B 100, 161106 (2019).

    CAS  Article  Google Scholar 

Download references


We acknowledge financial support from the EU (Marie-Skłodowska-Curie 748642-TherSpinMol and 707252-SpinReMag; ERC-StG-338258-OptoQMol, ERC-CoG-773048-MMGNRs, FET-767187-QuIET); the Glasstone Research Fellowship; the Royal Society (URF and grant funds) and the Royal Society of Edinburgh; the EPSRC (EP/T01377X/1, EP/N017188/1-QuEEN, EP/R513295/1-Doctoral Prize); and the NWO/OCW (Frontiers of Nanoscience programme and Vrij Programma-CISS). We acknowledge use of the University of Oxford Advanced Research Computing facility ( and the Quest high-performance computing facility at Northwestern University, jointly supported by the Office of the Provost, the Office for Research and Northwestern University Information Technology.

Author information




P.G. conceived the project and performed the electrical/thermoelectric measurements. P.G. and J.K.S. evaluated the data and performed the fitting. J.K.S. developed the theoretical transport models supervised by E.M.G. J.d.B. and C.H. supported the experiments. M.v.d.S. fabricated the devices. The experimental work was supervised by P.G. and H.S.J.v.d.Z. J.J.L.R. and L.B. synthesized the compound. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Pascal Gehring.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Sections 1–14 and Tables I–III.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gehring, P., Sowa, J.K., Hsu, C. et al. Complete mapping of the thermoelectric properties of a single molecule. Nat. Nanotechnol. 16, 426–430 (2021).

Download citation


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research