Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanotechnology to advance CRISPR–Cas genetic engineering of plants


CRISPR–Cas genetic engineering of plants holds tremendous potential for providing food security, battling biotic and abiotic crop stresses caused by climate change, and for environmental remediation and sustainability. Since the discovery of CRISPR–Cas technology, its usefulness has been demonstrated widely, including for genome editing in plants. Despite the revolutionary nature of genome-editing tools and the notable progress that these tools have enabled in plant genetic engineering, there remain many challenges for CRISPR applications in plant biotechnology. Nanomaterials could address some of the most critical challenges of CRISPR genome editing in plants through improvements in cargo delivery, species independence, germline transformation and gene editing efficiency. This Perspective identifies major barriers preventing CRISPR-mediated plant genetic engineering from reaching its full potential, and discusses ways that nanoparticle technologies can lower or eliminate these barriers. We also describe advances that are needed in nanotechnology to facilitate and accelerate plant genome editing. Timely advancement of the application of CRISPR technologies in plant engineering is crucial for our ability to feed and sustain the growing human population under a changing global climate.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: CRISPR–Cas reagent delivery to diverse plant species, cells and organelles.
Fig. 2: Schematic showing nanomaterials developed for plant biotechnology, delivery and genetic engineering.


  1. 1.

    Khush, G. S. & Virk, P. S. IR Varieties and Their Impact (International Rice Research Institute, 2005).

  2. 2.

    Altpeter, F. et al. Advancing crop transformation in the era of genome editing. Plant Cell 28, 1510–1520 (2016).

    CAS  Google Scholar 

  3. 3.

    Mahfouz, M. M., Piatek, A. & Stewart, C. N. Jr Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol. J. 12, 1006–1014 (2014).

    CAS  Google Scholar 

  4. 4.

    Hamilton, J. R. & Doudna, J. A. Knocking out barriers to engineered cell activity. Science 367, 976–977 (2020).

    CAS  Google Scholar 

  5. 5.

    Staahl, B. T. et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35, 431–434 (2017).

    CAS  Google Scholar 

  6. 6.

    Lee, K. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017).

    CAS  Google Scholar 

  7. 7.

    Martin-Ortigosa, S. et al. Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol. 164, 537–547 (2014). This work demonstrates the feasibility of plant genome editing in maize through nanoparticle-mediated protein delivery.

    CAS  Google Scholar 

  8. 8.

    Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).

    CAS  Google Scholar 

  9. 9.

    Kwak, S.-Y. et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).

    CAS  Google Scholar 

  10. 10.

    Demirer, G. S. et al. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci. Adv. 6, eaaz0495 (2020).

    CAS  Google Scholar 

  11. 11.

    Zhang, Y., Malzahn, A. A., Sretenovic, S. & Qi, Y. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 5, 778–794 (2019).

    Google Scholar 

  12. 12.

    Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261 (2017).

    CAS  Google Scholar 

  13. 13.

    Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015). This study demonstrates the transgene-free genome editing of important crop species using CRISPR-Cas9 ribonucleoproteins.

    CAS  Google Scholar 

  14. 14.

    Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K. & Cigan, A. M. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274 (2016).

    CAS  Google Scholar 

  15. 15.

    Ellison, E. E. et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat. Plants 6, 620–624 (2020).

    CAS  Google Scholar 

  16. 16.

    Zhu, H., Li, C. & Gao, C. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 21, 661–677 (2020). This is a comprehensive review on the applications of CRISPR genome editing in plants for biotechnology and agriculture.

    CAS  Google Scholar 

  17. 17.

    Gordon-Kamm, B. et al. Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants 8, 38 (2019).

    CAS  Google Scholar 

  18. 18.

    Lowe, K. et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016). This seminal work discovers morphogenic regulators that advance regeneration of monocot plant species in tissue culture.

    CAS  Google Scholar 

  19. 19.

    Maher, M. F. et al. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38, 84–89 (2020). This groundbreaking work demonstrates de novo induction of meristems in tobacco to facilitate tissue culture-free plant genome editing.

    CAS  Google Scholar 

  20. 20.

    Eeckhaut, T., Lakshmanan, P. S., Deryckere, D., Van Bockstaele, E. & Van Huylenbroeck, J. Progress in plant protoplast research. Planta 238, 991–1003 (2013).

    CAS  Google Scholar 

  21. 21.

    Zafar, K. et al. Genome editing technologies for rice improvement: progress, prospects, and safety concerns. Front. Genome Editing 2, 5 (2020).

    Google Scholar 

  22. 22.

    Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS  Google Scholar 

  23. 23.

    Lin, Q. et al. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582–585 (2020). This recent publication translates an important genome-editing tool of prime editing to rice and wheat.

    CAS  Google Scholar 

  24. 24.

    Yin, X. et al. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep. 36, 745–757 (2017).

    CAS  Google Scholar 

  25. 25.

    Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    CAS  Google Scholar 

  26. 26.

    Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).

    Google Scholar 

  27. 27.

    Naim, F. et al. Are the current gRNA ranking prediction algorithms useful for genome editing in plants? PLoS ONE 15, e0227994 (2020).

    CAS  Google Scholar 

  28. 28.

    Arndell, T. et al. gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnol. 19, 71 (2019).

    Google Scholar 

  29. 29.

    Liang, Y. et al. A screening method to identify efficient sgRNAs in Arabidopsis, used in conjunction with cell-specific lignin reduction. Biotechnol. Biofuels 12, 130 (2019).

    Google Scholar 

  30. 30.

    Rhee, S. Y. & Mutwil, M. Towards revealing the functions of all genes in plants. Trends Plant Sci. 19, 212–221 (2014).

    CAS  Google Scholar 

  31. 31.

    Kersey, P. J. Plant genome sequences: past, present, future. Curr. Opin. Plant Biol. 48, 1–8 (2019).

    CAS  Google Scholar 

  32. 32.

    Hrbáčková, M. et al. Biotechnological perspectives of omics and genetic engineering methods in alfalfa. Front. Plant Sci. 11, 592 (2020).

    Google Scholar 

  33. 33.

    Ladics, G. S. et al. Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Res. 24, 587–603 (2015).

    CAS  Google Scholar 

  34. 34.

    Torney, F., Trewyn, B. G., Lin, V. S. Y. & Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2, 295–300 (2007).

    CAS  Google Scholar 

  35. 35.

    Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017).

    CAS  Google Scholar 

  36. 36.

    Zhang, H. et al. DNA nanostructures coordinate gene silencing in mature plants. Proc. Natl Acad. Sci. USA 116, 7543–7548 (2019).

    CAS  Google Scholar 

  37. 37.

    Thagun, C., Chuah, J. & Numata, K. Targeted gene delivery into various plastids mediated by clustered cell‐penetrating and chloroplast‐targeting peptides. Adv. Sci. 6, 1902064 (2019).

    CAS  Google Scholar 

  38. 38.

    Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).

    CAS  Google Scholar 

  39. 39.

    Hu, P. et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 14, 7970–7986 (2020).

    CAS  Google Scholar 

  40. 40.

    Nguyen, D. N. et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat. Biotechnol. 38, 44–49 (2020).

    CAS  Google Scholar 

  41. 41.

    Díez, P. et al. Neoglycoenzyme-gated mesoporous silica nanoparticles: toward the design of nanodevices for pulsatile programmed sequential delivery. ACS Appl. Mater. Interfaces 8, 7657–7665 (2016).

    Google Scholar 

  42. 42.

    Su, Y. et al. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ. Sci. Nano 6, 2311–2331 (2019).

    CAS  Google Scholar 

  43. 43.

    Du, W. et al. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J. Environ. Monit. 13, 822–828 (2011).

    CAS  Google Scholar 

  44. 44.

    Al-Salim, N. et al. Quantum dot transport in soil, plants, and insects. Sci. Total Environ. 409, 3237–3248 (2011).

    CAS  Google Scholar 

  45. 45.

    Zhu, Z.-J. et al. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ. Sci. Technol. 46, 12391–12398 (2012).

    CAS  Google Scholar 

  46. 46.

    Milewska-Hendel, A., Zubko, M., Karcz, J., Stróż, D. & Kurczyńska, E. Fate of neutral-charged gold nanoparticles in the roots of the Hordeum vulgare L. cultivar Karat. Sci. Rep. 7, 3014 (2017).

    Google Scholar 

  47. 47.

    Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L. & Landry, M. P. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. 36, 882–897 (2018). This review paper provides a comprehensive summary of nanomaterial tools used in plant genetic engineering and plant biotechnology.

    CAS  Google Scholar 

  48. 48.

    Genetically Engineered Crops: Experiences and Prospects (National Academies Press, 2016).

  49. 49.

    Prado, J. R. et al. Genetically engineered crops: from idea to product. Annu. Rev. Plant Biol. 65, 769–790 (2014).

    CAS  Google Scholar 

  50. 50.

    Importation, interstate movement, and release into the environment of certain genetically engineered organisms [excerpts]. Biotechnol. Law Rep. 28, 382–408 (2009).

  51. 51.

    Waltz, E. With a free pass, CRISPR-edited plants reach market in record time. Nat. Biotechnol. 36, 6–7 (2018).

    CAS  Google Scholar 

  52. 52.

    Gupta, M., Gerard, M., Padmaja, S. S. & Sastry, R. K. Trends of CRISPR technology development and deployment into agricultural production-consumption systems. World Pat. Inf. 60, 101944 (2020).

    Google Scholar 

  53. 53.

    Zhang, D. et al. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective. Plant Biotechnol. J. 18, 1651–1669 (2020).

    Google Scholar 

  54. 54.

    Callaway, E. CRISPR plants now subject to tough GM laws in European Union. Nature 560, 16 (2018).

    CAS  Google Scholar 

  55. 55.

    Holme, I. B., Gregersen, P. L. & Brinch-Pedersen, H. Induced genetic variation in crop plants by random or targeted mutagenesis: convergence and differences. Front. Plant Sci. 10, 1468 (2019).

    Google Scholar 

  56. 56.

    Kostarelos, K. The long and short of carbon nanotube toxicity. Nat. Biotechnol. 26, 774–776 (2008).

    CAS  Google Scholar 

  57. 57.

    Pikula, K. et al. Comparison of the level and mechanisms of toxicity of carbon nanotubes, carbon nanofibers, and silicon nanotubes in bioassay with four marine microalgae. Nanomaterials 10, 485 (2020).

    CAS  Google Scholar 

  58. 58.

    Kermanizadeh, A. et al. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health—ENPRA project—the highlights, limitations, and current and future challenges. J. Toxicol. Environ. Health B 19, 1–28 (2016).

    CAS  Google Scholar 

  59. 59.

    Heller, D. A. et al. Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nat. Nanotechnol. 15, 164–166 (2020).

    CAS  Google Scholar 

Download references


We thank W. Dwyer and J. Krupp for helpful discussions. G.S.D. is funded by the Schlumberger Foundation Faculty for the Future Program and the Resnick Sustainability Institute. C.T.J. acknowledges the support of the National Science Foundation Graduate Research Fellowships Program. We acknowledge support of a Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI) (M.P.L.), a Beckman Foundation Young Investigator Award (M.P.L.), a USDA AFRI award (M.P.L.), a USDA NIFA award (M.P.L.), a CZI deep tissue imaging award (M.P.L.), and an FFAR New Innovator Award (M.P.L.). M.P.L. is a Chan Zuckerberg Biohub investigator. This research was supported, in part, by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomic Science Program grant no. DE-DE-SC0020366 (S.Y.R., J.C.M., M.P.L. and D.W.E.) and DE-SC0018277 (S.Y.R.), the DOE Joint BioEnergy Institute ( supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory (J.C.M.) and the US Department of Energy, and the US National Science Foundation grants IOS-1546838 (S.Y.R.) and MCB-1617020 (S.Y.R.).

Author information



Corresponding authors

Correspondence to Gozde S. Demirer, Seung Y. Rhee, Jenny C. Mortimer or Markita P. Landry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Sandeep Kumar, Neena Mitter, Yiping Qi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demirer, G.S., Silva, T.N., Jackson, C.T. et al. Nanotechnology to advance CRISPR–Cas genetic engineering of plants. Nat. Nanotechnol. 16, 243–250 (2021).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research