Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles

Abstract

Optical tweezers are widely used in materials assembly1, characterization2, biomechanical force sensing3,4 and the in vivo manipulation of cells5 and organs6. The trapping force has primarily been generated through the refractive index mismatch between a trapped object and its surrounding medium. This poses a fundamental challenge for the optical trapping of low-refractive-index nanoscale objects, including nanoparticles and intracellular organelles. Here, we report a technology that employs a resonance effect to enhance the permittivity and polarizability of nanocrystals, leading to enhanced optical trapping forces by orders of magnitude. This effectively bypasses the requirement of refractive index mismatch at the nanoscale. We show that under resonance conditions, highly doping lanthanide ions in NaYF4 nanocrystals makes the real part of the Clausius–Mossotti factor approach its asymptotic limit, thereby achieving a maximum optical trap stiffness of 0.086 pN μm–1 mW–1 for 23.3-nm-radius low-refractive-index (1.46) nanoparticles, that is, more than 30 times stronger than the reported value for gold nanoparticles of the same size. Our results suggest a new potential of lanthanide doping for the optical control of the refractive index of nanomaterials, developing the optical force tag for the intracellular manipulation of organelles and integrating optical tweezers with temperature sensing and laser cooling7 capabilities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Comparison of optical trapping of low-refractive-index nanoparticles with or without doping by lanthanide ions.
Fig. 2: Investigation of ytterbium, erbium and neodymium doping in enhancing the optical gradient force.
Fig. 3: Effect of oscillating ion concentration on optical trapping.
Fig. 4: Trap stiffness measurements of lanthanide-doped nanoparticles of different volumes.
Fig. 5: Escape velocity measurements to quantify the trap stiffness for HeLa cells with and without lanthanide-doped nanoparticles.

Data availability

The data that support Figs. 25 can be found in the Source Data, and the data that support the other findings of this study are available within the article and its Supplementary Information. Additional data are available from the corresponding author upon request. Source data are provided with this paper.

Code availability

All custom code is available from the corresponding author upon request.

References

  1. 1.

    Pauzauskie, P. J. et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nat. Mater. 5, 97–101 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    Maragò, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G. & Ferrari, A. C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 8, 807–819 (2013).

    Article  Google Scholar 

  3. 3.

    Stevenson, D. J., Gunn-Moore, F. & Dholakia, K. Light forces the pace: optical manipulation for biophotonics. J. Biomed. Opt. 15, 041503 (2010).

    Article  Google Scholar 

  4. 4.

    Norregaard, K., Metzler, R., Ritter, C. M., Berg-Sørensen, K. & Oddershede, L. B. Manipulation and motion of organelles and single molecules in living cells. Chem. Rev. 117, 4342–4375 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Zhong, M., Wei, X., Zhou, J., Wang, Z. & Li, Y. Trapping red blood cells in living animals using optical tweezers. Nat. Commun. 4, 1768 (2013).

    Article  Google Scholar 

  6. 6.

    Favre-Bulle, I. A., Stilgoe, A. B., Rubinsztein-Dunlop, H. & Scott, E. K. Optical trapping of otoliths drives vestibular behaviours in larval zebrafish. Nat. Commun. 8, 630 (2017).

    Article  Google Scholar 

  7. 7.

    Zhou, X., Smith, B. E., Roder, P. B. & Pauzauskie, P. J. Laser refrigeration of ytterbium-doped sodium–yttrium–fluoride nanowires. Adv. Mater. 28, 8658–8662 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Park, Y. K., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Luk’yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013).

    Article  Google Scholar 

  10. 10.

    Taylor, R. W. et al. Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. Nat. Photonics 13, 480–487 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    CAS  Article  Google Scholar 

  12. 12.

    Visscher, K., Schnltzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999).

    CAS  Article  Google Scholar 

  13. 13.

    Hansen, P. M., Bhatia, V. K., Harrit, N. & Oddershede, L. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 5, 1937–1942 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    Seol, Y., Carpenter, A. E. & Perkins, T. T. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31, 2429–2431 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    Andres-Arroyo, A., Gupta, B., Wang, F., Gooding, J. J. & Reece, P. J. Optical manipulation and spectroscopy of silicon nanoparticles exhibiting dielectric resonances. Nano Lett. 16, 1903–1910 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Knöner, G., Parkin, S., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Measurement of the index of refraction of single microparticles. Phys. Rev. Lett. 97, 157402 (2006).

    Article  Google Scholar 

  17. 17.

    Draine, B. T. & Goodman, J. Beyond Clausius-Mossotti: wave propagation on a polarisable point lattice and the discrete dipole approximation. Astrophys. J. 405, 685–697 (1993).

    Article  Google Scholar 

  18. 18.

    Albaladejo, S., Marqués, M. I., Laroche, M. & Sáenz, J. J. Scattering forces from the curl of the spin angular momentum of a light field. Phys. Rev. Lett. 102, 113602 (2009).

    Article  Google Scholar 

  19. 19.

    Gao, D. et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl. 6, e17039 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Török, P., Varga, P., Laczik, Z. & Booker, G. R. Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation. J. Opt. Soc. Am. A 12, 325–332 (1995).

    Article  Google Scholar 

  21. 21.

    Zou, W., Visser, C., Maduro, J. A., Pshenichnikov, M. S. & Hummelen, J. C. Broadband dye-sensitised upconversion of near-infrared light. Nat. Photonics 6, 560–564 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Qin, W. et al. Multi-ion cooperative processes in Yb3+ clusters. Light Sci. Appl. 3, e193 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Bensalah, A. et al. Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality. Opt. Mater. (Amst.) 26, 375–383 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    Jackson, J. D. Classical Electrodynamics (Wiley, 1998).

  25. 25.

    Wang, Y. F. et al. Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimised heating effect. ACS Nano 7, 7200–7206 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Quimby, R. S., Miniscalco, W. J. & Thompson, B. A. Excited-state absorption at 980 nm in erbium-doped glass. In Proc. SPIE 1581, Fiber Laser Sources and Amplifiers III (eds. Digonnet, M. J. F. & Snitzer, E.) 72–79 (SPIE, 1992).

  27. 27.

    Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    CAS  Article  Google Scholar 

  28. 28.

    Liu, Q. et al. Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance. Nat. Photonics 12, 548–553 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    Wang, F. et al. Microscopic inspection and tracking of single upconversion nanoparticles in living cells. Light Sci. Appl. 7, 18007 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Haro-González, P. et al. Optical trapping of NaYF4:Er3+,Yb3+ upconverting fluorescent nanoparticles. Nanoscale 5, 12192–12199 (2013).

    Article  Google Scholar 

  31. 31.

    Rodríguez-Sevilla, P. et al. Optical forces at the nanoscale: size and electrostatic effects. Nano Lett. 18, 602–609 (2018).

    Article  Google Scholar 

  32. 32.

    Lowry, G. V. et al. Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environ. Sci. Nano 3, 953–965 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1983).

  34. 34.

    Warkiani, M. E. et al. Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat. Protoc. 11, 134–148 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Shi, Y. et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat. Commun. 9, 815 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Shi, Y. et al. Nanometer-precision linear sorting with synchronised optofluidic dual barriers. Sci. Adv. 4, eaao0773 (2018).

    Article  Google Scholar 

  37. 37.

    Polimeno, P. et al. Gain-assisted optomechanical position locking of metal/dielectric nanoshells in optical potentials. ACS Photonics 7, 1262–1270 (2020).

    CAS  Article  Google Scholar 

  38. 38.

    Duong, H. T. T. et al. Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Adv. 8, 4842–4849 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Rodríguez-Sevilla, P. et al. Thermal scanning at the cellular level by an optically trapped upconverting fluorescent particle. Adv. Mater. 28, 2421–2426 (2016).

    Article  Google Scholar 

  40. 40.

    Ren, Y., Wu, J. & Li, Y. Applications of Monte Carlo Method in Science and Engineering (InTech, 2011).

Download references

Acknowledgements

The authors thank L. Zhang for polymer synthesis. The authors acknowledge financial support from a UTS Chancellor’s Postdoctoral Research Fellowship (PRO18-6128), an Australian Research Council (ARC) DECRA fellowship (DE200100074, F.W.), the ARC Discovery Project (DP190101058, F.W), the National Natural Science Foundation of China (NSFC, 61729501), the Major International (Regional) Joint Research Project of the NSFC (51720105015), the Science and Technology Innovation Commission of Shenzhen (KQTD20170810110913065) and the Australia–China Science and Research Fund Joint Research Centre for Point-of-Care Testing (ACSRF658277, SQ2017YFGH001190). X.S., D.W., X.D., C.C., J.L., Y.L. and L.D. acknowledge the financial support from China Scholarship Council scholarships (X.S., 201708200004l; D.W, 201706170027; X.D., 201706170028; C.C., 201607950009; J.L., 201508530231; Y.L., 201607950010; L.D., 201809370076).

Author information

Affiliations

Authors

Contributions

F.W. and D.J. conceived the project and designed the experiments. X.S., F.W., C.C., Y.L., and L.D. constructed the optical setup and performed the optical experiments. F.W., P.J.R. and Y.L. built the theoretical simulation and analytical model. S.W. and J.L. synthesized the nanoparticles. D.W. and X.D. conducted the cell biology experiments. X.S., P.N. and F.W. developed the trap stiffness detection method. F.W., X.S., P.J.R. and D.J. analysed the results, prepared the figures and wrote the manuscript. D.J. and F.W. supervised the project.

Corresponding authors

Correspondence to Fan Wang or Peter J. Reece or Dayong Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Onofrio Marago and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–23 and Tables 1–9.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shan, X., Wang, F., Wang, D. et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nat. Nanotechnol. (2021). https://doi.org/10.1038/s41565-021-00852-0

Download citation

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research