Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Distant spin entanglement via fast and coherent electron shuttling

Abstract

In the quest for large-scale quantum computing, networked quantum computers offer a natural path towards scalability. While recent experiments have demonstrated nearest neighbour entanglement for electron spin qubits in semiconductors, on-chip long-distance entanglement could bring more versatility to connect quantum core units. Here, we employ the moving trapping potential of a surface acoustic wave to realize the controlled and coherent transfer of a pair of entangled electron spins between two distant quantum dots. The subsequent electron displacement induces coherent spin rotations, which drives spin quantum interferences. We observe high-contrast interference as a signature of the preservation of the entanglement all along the displacement procedure, which includes a separation of the two spins by a distance of 6 μm. This work opens the route towards fast on-chip deterministic interconnection of remote quantum bits in semiconductor quantum circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Electron transfer protocol.
Fig. 2: Local spin manipulation.
Fig. 3: Controllable injection in moving quantum dots.
Fig. 4: Two-electron-spin quantum interferences.

Data availability

The datasets used in this work are available online from the Zenodo repository at https://doi.org/10.5281/zenodo.4115984.

References

  1. 1.

    Aspect, A., Grangier, P. & Roger, G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981).

    CAS  Article  Google Scholar 

  2. 2.

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  Google Scholar 

  3. 3.

    Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Imamoğlu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  Google Scholar 

  6. 6.

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    CAS  Article  Google Scholar 

  7. 7.

    Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    Shulman, M. D. et al. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 336, 202–205 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Kandel, Y. P. et al. Coherent spin-state transfer via Heisenberg exchange. Nature 573, 553–557 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Borjans, F., Croot, X. G., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2020).

    CAS  Article  Google Scholar 

  15. 15.

    Landig, A. J. et al. Coherent spin–photon coupling using a resonant exchange qubit. Nature 560, 179–184 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Viennot, J. J., Dartiailh, M. C., Cottet, A. & Kontos, T. Coherent coupling of a single spin to microwave cavity photons. Science 349, 408–411 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Baart, T. A., Fujita, T., Reichl, C., Wegscheider, W. & Vandersypen, L. M. K. Coherent spin-exchange via a quantum mediator. Nat. Nanotechnol. 12, 26–30 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Malinowski, F. K. et al. Fast spin exchange across a multielectron mediator. Nat. Commun. 10, 1196 (2019).

    Article  Google Scholar 

  19. 19.

    Flentje, H. et al. Coherent long-distance displacement of individual electron spins. Nat. Commun. 8, 501 (2017).

  20. 20.

    Fujita, T., Baart, T. A., Reichl, C., Wegscheider, W. & Vandersypen, L. M. K. Coherent shuttle of electron-spin states. npj Quant. Inf. 3, 22 (2017).

    Article  Google Scholar 

  21. 21.

    Mortemousque, P.-A. et al. Coherent control of individual electron spins in a two-dimensional quantum dot array. Nat. Nanotechnol. https://doi.org/10.1038/s41565-020-00816-w (2020).

  22. 22.

    McNeil, R. P. G. et al. On-demand single-electron transfer between distant quantum dots. Nature 477, 439–442 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    Hermelin, S. et al. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 477, 435–438 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Takada, S. et al. Sound-driven single-electron transfer in a circuit of coupled quantum rails. Nat. Commun. 10, 4557 (2019).

    Article  Google Scholar 

  25. 25.

    Talyanskii, V. I. et al. Single-electron transport in a one-dimensional channel by high-frequency surface acoustic waves. Phys. Rev. B 56, 15180–15184 (1997).

    CAS  Article  Google Scholar 

  26. 26.

    Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Meunier, T. et al. Nondestructive measurement of electron spins in a quantum dot. Phys. Rev. B 74, 195303 (2006).

    Article  Google Scholar 

  28. 28.

    Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    Bertrand, B. et al. Injection of a single electron from static to moving quantum dots. Nanotechnology 27, 214001 (2016).

    Article  Google Scholar 

  30. 30.

    Merkulov, I. A., Efros, A. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

  31. 31.

    Stotz, J. A. H., Hey, R., Santos, P. V. & Ploog, K. H. Coherent spin transport through dynamic quantum dots. Nat. Mater. 4, 585–588 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    Sanada, H. et al. Acoustically induced spin-orbit interactions revealed by two-dimensional imaging of spin transport in GaAs. Phys. Rev. Lett. 106, 216602 (2011).

  33. 33.

    Golovach, V. N., Khaetskii, A. & Loss, D. Phonon-induced decay of the electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004).

    Article  Google Scholar 

  34. 34.

    Huang, P. & Hu, X. Spin qubit relaxation in a moving quantum dot. Phys. Rev. B 88, 075301 (2013).

    Article  Google Scholar 

  35. 35.

    Nixon, J. A. & Davies, J. H. Potential fluctuations in heterostructure devices. Phys. Rev. B 41, 7929–7932 (1990).

    CAS  Article  Google Scholar 

  36. 36.

    Yoneda, J. et al. Coherent spin qubit transport in silicon. Preprint at https://arxiv.org/abs/2008.04020 (2020).

  37. 37.

    Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    CAS  Article  Google Scholar 

  38. 38.

    Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    CAS  Article  Google Scholar 

  39. 39.

    Büyükköse, S., Vratzov, B., van der Veen, J., Santos, P. V. & van der Wiel, W. G. Ultrahigh-frequency surface acoustic wave generation for acoustic charge transport in silicon. Appl. Phys. Lett. 102, 013112 (2013).

    Article  Google Scholar 

  40. 40.

    Barros, A. D., Batista, P. D., Tahraoui, A., Diniz, J. A. & Santos, P. V. Ambipolar acoustic transport in silicon. J. Appl. Phys. 112, 013714 (2012).

    Article  Google Scholar 

  41. 41.

    Hollenberg, L. C. L., Greentree, A. D., Fowler, A. G. & Wellard, C. J. Two-dimensional architectures for donor-based quantum computing. Phys. Rev. B 74, 045311 (2006).

    Article  Google Scholar 

  42. 42.

    Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors-hot, dense, and coherent. npj Quant. Inf. 3, 34 (2017).

Download references

Acknowledgements

We would like to thank B. Bertrand, M. Nurizzo, M. Vinet and X. Hu for enlightening discussions. We acknowledge support from the technical poles of the Institut Néel, and in particular the Nanofab team who helped with the sample realization, as well as P. Perrier, G. Pont, H. Rodenas, E. Eyraud, D. Lepoittevin, C. Hoarau and C. Guttin. A.L. and A.D.W. gratefully acknowledge the support of DFG-TRR160, BMBF-Q.Link.X 16KIS0867 and DFH/UFA CDFA-05-06. T.M. acknowledges financial support from ERC QSPINMOTION and Quantera Si QuBus.

Author information

Affiliations

Authors

Contributions

B.J. fabricated the sample and performed the experiments with the help of P.-A.M., T.M. and C.B.; B.J. and T.M. interpreted the data and wrote the manuscript with input from all the other authors. A.L. and A.D.W. performed the design and molecular-beam-epitaxy growth of the high-mobility heterostructure. All authors discussed the results extensively, as well as the manuscript.

Corresponding authors

Correspondence to Baptiste Jadot or Tristan Meunier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Sections 1–4 and refs 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jadot, B., Mortemousque, PA., Chanrion, E. et al. Distant spin entanglement via fast and coherent electron shuttling. Nat. Nanotechnol. (2021). https://doi.org/10.1038/s41565-021-00846-y

Download citation

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research