A rewritable optical storage medium of silk proteins using near-field nano-optics

Abstract

Nanoscale lithography and information storage in biocompatible materials offer possibilities for applications such as bioelectronics and degradable electronics for which traditional semiconductor fabrication techniques cannot be used. Silk fibroin, a natural protein renowned for its strength and biocompatibility, has been widely studied in this context. Here, we present the use of silk film as a biofunctional medium for nanolithography and data storage. Using tip-enhanced near-field infrared nanolithography, we demonstrate versatile manipulation and characterize the topography and conformation of the silk in situ. In particular, we fabricate greyscale and dual-tone nanopatterns with full-width at half-maximum resolutions of ~35 nm, creating an erasable ‘silk drive’ that digital data can be written to or read from. As an optical storage medium, the silk drive can store digital and biological information with a capacity of ~64 GB inch−2 and exhibits long-term stability under various harsh conditions. As a proof-of-principle demonstration, we show that this silk drive can be biofunctionalized to exhibit chromogenic reactions, resistance to bacterial infection and heat-triggered, enzyme-assisted decomposition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: In situ patterning and characterization of the silk drive using TNINL.
Fig. 2: Mechanisms of TNINL.
Fig. 3: TNINL-mediated analogue and digital patterning of the silk drive.
Fig. 4: Writing and erasing data on the silk drive.
Fig. 5: High degree of robustness and biologically relevant functionalities of the silk drive.

Data availability

The data that support the findings of this study are available online at figshare (https://doi.org/10.6084/m9.figshare.12466034) and from the corresponding authors upon reasonable request.

References

  1. 1.

    Li, L., Liu, X., Pal, S., Wang, S. & Giannelis, E. P. Extreme ultraviolet resist materials for sub-7 nm patterning. Chem. Soc. Rev. 46, 4855–4866 (2017).

    Google Scholar 

  2. 2.

    Gu, M., Li, X. & Cao, Y. Optical storage arrays: a perspective for future big data storage. Light Sci. Appl. 3, e177 (2014).

    CAS  Google Scholar 

  3. 3.

    Kim, J. et al. A stacked memory device on logic 3D technology for ultra-high-density data storage. Nanotechnology 22, 254006 (2011).

    Google Scholar 

  4. 4.

    Vettiger, P. et al. The “Millipede”—more than one thousand tips for future AFM data storage. IBM J. Res. Dev. 44, 323–340 (2000).

    CAS  Google Scholar 

  5. 5.

    Chen, X. et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019).

    Google Scholar 

  6. 6.

    Mastel, S. et al. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photon. 5, 3372–3378 (2018).

    Google Scholar 

  7. 7.

    Wagner, M. & Mueller, T. High-resolution nanochemical mapping of soft materials. Microsc. Today 24, 44–51 (2016).

    CAS  Google Scholar 

  8. 8.

    Tseng, A. A. Recent developments in nanofabrication using scanning near-field optical microscope lithography. Opt. Laser Technol. 39, 514–526 (2007).

    CAS  Google Scholar 

  9. 9.

    Quidant, R. & Girard, C. Surface-plasmon-based optical manipulation. Laser Photon. Rev. 2, 47–57 (2008).

    CAS  Google Scholar 

  10. 10.

    Righini, M., Volpe, G., Girard, C., Petrov, D. & Quidant, R. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. 100, 217–220 (2008).

    Google Scholar 

  11. 11.

    Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    CAS  Google Scholar 

  12. 12.

    Atie, E. M. et al. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a SNOM fiber tip. Appl. Phys. Lett. 106, 151104 (2015).

    Google Scholar 

  13. 13.

    Kravtsov, V., Ulbricht, R., Atkin, J. M. & Raschke, M. B. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 11, 459–464 (2016).

    Google Scholar 

  14. 14.

    Dick, S. et al. Surface-enhanced Raman spectroscopy as a probe of the surface chemistry of nanostructured materials. Adv. Mater. 28, 5705–5711 (2016).

    CAS  Google Scholar 

  15. 15.

    Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).

    Google Scholar 

  16. 16.

    Zhang, W. & Chen, Y. Visibility of subsurface nanostructures in scattering-type scanning near-field optical microscopy imaging. Opt. Express 28, 6696–6707 (2020).

    Google Scholar 

  17. 17.

    Ohtsu, M., Kobayashi, K., Kawazoe, T., Sangu, S. & Yatsui, T. Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields. IEEE J. Sel. Top. Quantum Electron. 8, 839–862 (2002).

    CAS  Google Scholar 

  18. 18.

    Srituravanich, W. et al. Flying plasmonic lens in the near field for high-speed nanolithography. Nat. Nanotechnol. 3, 733–737 (2008).

    CAS  Google Scholar 

  19. 19.

    Pan, L. et al. Maskless plasmonic lithography at 22 nm resolution. Sci. Rep. 1, 00175 (2011).

    CAS  Google Scholar 

  20. 20.

    Alkaisi, M. M., Blaikie, R. J. & Mcnab, S. J. Nanolithography in the evanescent near field. Adv. Mater. 13, 877–887 (2001).

    CAS  Google Scholar 

  21. 21.

    Kim, S. et al. All-water-based electron-beam lithography using silk as a resist. Nat. Nanotechnol. 9, 306–310 (2014).

    Google Scholar 

  22. 22.

    Qin, N. et al. Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy. Nat. Commun. 7, 13079 (2016).

    CAS  Google Scholar 

  23. 23.

    Jiang, J. et al. Protein bricks: 2D and 3D bio-nanostructures with shape and function on demand. Adv. Mater. 30, 1705919 (2018).

    Google Scholar 

  24. 24.

    Kurland, N. E., Dey, T., Kundu, S. C. & Yadavalli, V. K. Precise patterning of silk microstructures using photolithography. Adv. Mater. 25, 6207–6212 (2013).

    CAS  Google Scholar 

  25. 25.

    Kurland, N. E., Dey, T., Wang, C., Kundu, S. C. & Yadavalli, V. K. Silk protein lithography as a route to fabricate sericin microarchitectures. Adv. Mater. 26, 4431–4437 (2014).

    CAS  Google Scholar 

  26. 26.

    Liu, W. et al. Precise protein photolithography (P3): high performance biopatterning using silk fibroin light chain as the resist. Adv. Sci. 4, 1700191 (2017).

    Google Scholar 

  27. 27.

    Tao, H., Kaplan, D. L. & Omenetto, F. G. Silk materials—a road to sustainable high technology. Adv. Mater. 24, 2824–2837 (2012).

    CAS  Google Scholar 

  28. 28.

    Zhou, Z. et al. The use of functionalized silk fibroin films as a platform for optical diffraction-based sensing applications. Adv. Mater. 29, 1605471 (2017).

    Google Scholar 

  29. 29.

    Zhou, Z. et al. Engineering the future of silk materials through advanced manufacturing. Adv. Mater. 30, 1706983 (2018).

    Google Scholar 

  30. 30.

    Rockwood, D. N. et al. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612–1631 (2011).

    CAS  Google Scholar 

  31. 31.

    Stiegler, J. M. et al. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy. ACS Nano 5, 6494–6499 (2011).

    CAS  Google Scholar 

  32. 32.

    Govyadinov, A. A., Amenabar, I., Huth, F., Carney, P. S. & Hillenbrand, R. Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. J. Phys. Chem. Lett. 4, 1526–1531 (2013).

  33. 33.

    Autore, M., Mester, L., Goikoetxea, M. & Hillenbrand, R. Substrate matters: surface-polariton enhanced infrared nanospectroscopy of molecular vibrations. Nano Lett. 19, 8066–8073 (2019).

    CAS  Google Scholar 

  34. 34.

    Wright, C. D. et al. Write strategies for multiterabit per square inch scanned-probe phase-change memories. Appl. Phys. Lett. 97, 173104 (2010).

    Google Scholar 

  35. 35.

    Holzner, F., Paul, P., Drechsler, U., Despont, M. & Duerig, U. High density multi-level recording for archival data preservation. Appl. Phys. Lett. 99, 023110–023113 (2011).

    Google Scholar 

  36. 36.

    Zhao, Y.-Q. et al. Silkworm silk/poly(lactic acid) biocomposites: dynamic mechanical, thermal and biodegradable properties. Polym. Degrad. Stab. 95, 1978–1987 (2010).

    CAS  Google Scholar 

  37. 37.

    Hwang, S.-W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

This material was based upon work supported by the National Science Foundation under grant no. CMMI-1563422. The University of Texas authors also acknowledge support from the Department of Mechanical Engineering. The Stony Brook University authors acknowledge support from the National Science Foundation under grant no. DMR-1904576, grant no. CMMI-1562915 and SBU-BNL SEED grant. T.H.T.’s group acknowledges support from the following: National Science and Technology Major Project from the Minister of Science and Technology of China (grant nos. 2018AAA0103100, 2020AAA0130100), National Natural Science Foundation of China (grant nos. 61574156, 61904187, 51703239, 51703238, 61605233), Scientific Instrument and Equipment Development Project of the Chinese Academy of Sciences (grant no. YJKYYQ20170060), National Science Fund for Excellent Young Scholars (grant no. 61822406), Shanghai Outstanding Academic Leaders Plan (grant no. 18XD1404700), Shanghai Sailing Program (grant nos. 19YF1456700, 17YF1422800), Key Research Program of Frontier Sciences, CAS (grant no. ZDBS-LY-JSC024), Youth Innovation Promotion Association CAS (grant no. 2019236) and Xinwei Star Project (grant no. Y91QDA1001). We thank Y. Mao, Z. Shi and J. Zhong from Huashan Hospital of Fudan University in Shanghai for their assistance with all animal experiments.

Author information

Affiliations

Authors

Contributions

T.H.T., M.K.L. and W. Lee conceived the idea. T.H.T., M.K.L., W. Lee and Z.Z. designed the experiments. W. Lee, Z.Z., N.Q., J.J. and K.L. performed the experiments. M.K.L. and X.C. performed the simulation study. T.H.T., W. Lee, Z.Z., M.K.L., X.C., N.Q., J.J., K.L. and W. Li analysed the data. T.H.T., M.K.L., W. Lee, Z.Z., X.C. and W. Li wrote the paper. All authors discussed the results and provided comments for the manuscript.

Corresponding authors

Correspondence to Zhitao Zhou or Mengkun Liu or Tiger H. Tao or Wei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3 and Supplementary Figs. 1–20.

Supplementary Audio 1

Original audio encoded on silk.

Supplementary Audio 2

Recalled audio.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, W., Zhou, Z., Chen, X. et al. A rewritable optical storage medium of silk proteins using near-field nano-optics. Nat. Nanotechnol. (2020). https://doi.org/10.1038/s41565-020-0755-9

Download citation

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research