Large non-reciprocal charge transport mediated by quantum anomalous Hall edge states


The topological nature of the quantum anomalous Hall effect (QAHE) causes a dissipationless chiral edge current at the sample boundary1,2. Of fundamental interest is whether the chirality of the band structure manifests itself in charge transport properties. Here we report the observation of large non-reciprocal charge transport3 in a magnetic topological insulator, Cr-doped (Bi,Sb)2Te3. When the surface massive Dirac band is slightly carrier doped by a gate voltage, the edge state starts to dissipate and exhibits a current-direction-dependent resistance with a directional difference as large as 26%. The polarity of this diode effect depends on the magnetization direction as well as on the carrier type, electrons or holes. The correlation between the non-reciprocal resistance and the Hall resistance indicates that the non-reciprocity originates from the interplay between the chiral edge state and the Dirac surface state.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Large non-reciprocal charge transport mediated by the edge states.
Fig. 2: Fermi-level dependence of non-reciprocal resistance.
Fig. 3: Relationship between Hall resistance and non-reciprocal resistance.

Data availability

The authors declare that all relevant data supporting the findings of this study are available within the article and its Supplementary Information. Additional data are available from the corresponding author upon reasonable request. Source data are provided with this paper.


  1. 1.

    Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Article  Google Scholar 

  3. 3.

    Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    Article  Google Scholar 

  4. 4.

    Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Yokouchi, T. et al. Electrical magnetochiral effect induced by chiral spin fluctuations. Nat. Commun. 8, 866 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Qin, F. et al. Superconductivity in a chiral nanotube. Nat. Commun. 8, 14465 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Wakatsuki, R. et al. Nonreciprocal charge transport in noncentrosymmetric superconductors. Sci. Adv. 3, e1602390 (2017).

    Article  Google Scholar 

  8. 8.

    He, P. et al. Nonlinear magnetotransport shaped by Fermi surface topology and convexity. Nat. Commun. 10, 1290 (2019).

    Article  Google Scholar 

  9. 9.

    Rikken, G. L. J. A. & Wyder, P. Magnetoelectric anisotropy in diffusive transport. Phys. Rev. Lett. 94, 016601 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    Olejník, K., Novák, V., Wunderlich, J. & Jungwirth, T. Electrical detection of magnetization reversal without auxiliary magnets. Phys. Rev. B 91, 180402 (2015).

    Article  Google Scholar 

  11. 11.

    Avci, C. O. et al. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. Nat. Phys. 11, 570–575 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Lustikova, J. et al. Vortex rectenna powered by environmental fluctuations. Nat. Commun. 9, 4922 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Yasuda, K. et al. Large unidirectional magnetoresistance in a magnetic topological insulator. Phys. Rev. Lett. 117, 127202 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Lv, Y. et al. Unidirectional spin-Hall and Rashba−Edelstein magnetoresistance in topological insulator–ferromagnet layer heterostructures. Nat. Commun. 9, 111 (2018).

    Article  Google Scholar 

  15. 15.

    He, P. et al. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states. Nat. Phys. 14, 495–499 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Yasuda, K. et al. Nonreciprocal charge transport at topological insulator/superconductor interface. Nat. Commun. 10, 2734 (2019).

    Article  Google Scholar 

  17. 17.

    Mogi, M. et al. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Appl. Phys. Lett. 107, 182401 (2015).

    Article  Google Scholar 

  18. 18.

    Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2–xTe3. Proc. Natl Acad. Sci. USA 112, 1316–1321 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Kou, X. et al. Metal-to-insulator switching in quantum anomalous Hall states. Nat. Commun. 6, 8474 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Kawamura, M. et al. Topological quantum phase transition in magnetic topological insulator upon magnetization rotation. Phys. Rev. B 98, 140404 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Büttiker, M. Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B 38, 9375–9389 (1988).

    Article  Google Scholar 

  22. 22.

    Datta, S. Lessons from Nanoelectronics: A New Perspective on Transport—Part A: Basic Concepts (World Scientific, 2017).

  23. 23.

    Isobe, H., Xu, S.-Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).

    Article  Google Scholar 

  24. 24.

    Deng, Y. et al. Magnetic-field-induced quantized anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    CAS  Article  Google Scholar 

  25. 25.

    Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    CAS  Article  Google Scholar 

  26. 26.

    Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    CAS  Article  Google Scholar 

  27. 27.

    Sarma, S. D. & Pinczuk, A. Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional Semiconductor Structures (Wiley, 1997).

  28. 28.

    Hu, J., Xu, S.-Y., Ni, N. & Mao, Z. Transport of topological semimetals. Annu. Rev. Mater. Res. 49, 207–252 (2019).

    CAS  Article  Google Scholar 

  29. 29.

    Belopolski, I. et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278–1281 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Liu, D. F. et al. Magnetic Weyl semimetal phase in a kagomé crystal. Science 365, 1282–1285 (2019).

    CAS  Article  Google Scholar 

Download references


This research was supported by a JSPS/MEXT Grant-in-Aid for Scientific Research (no. 15H05853, no. 15H05867, no. 16J03476, no. 17H04846, no. 18H03676, no. 18H04229 and no. 18H01155), JST CREST (no. JPMJCR16F1, no. JPMJCR1874 and no. JPMJCR19T3) and JST PRESTO (no. JPMJPR19L9).

Author information




Y.T. conceived the project. K.Y., M.M. and R.Y. grew the thin films with the help of A.T., M. Kawamura, K.S.T. and M. Kawasaki. K.Y. and R.Y. fabricated the device and performed the measurements. T.M. and N.N. performed the theoretical calculations. K.Y., T.M., N.N. and Y.T. jointly wrote the manuscript with contributions from all the authors.

Corresponding authors

Correspondence to Kenji Yasuda or Yoshinori Tokura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–7, Table 1 and refs. 1–37.

Source data

Source Data Fig. 1

Data used to generate graphs in Fig. 1.

Source Data Fig. 2

Data used to generate graphs in Fig. 2.

Source Data Fig. 3

Data used to generate graphs in Fig. 3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yasuda, K., Morimoto, T., Yoshimi, R. et al. Large non-reciprocal charge transport mediated by quantum anomalous Hall edge states. Nat. Nanotechnol. (2020).

Download citation