Abstract
Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal–oxide–semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Horowitz, M. Computing's energy problem (and what we can do about it). In Proc. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 10–14 (IEEE, 2014).
Lee, D. U. et al. A 1.2 V 8Gb 8-channel 128GB/s high-bandwidth memory (HBM) stacked DRAM with effective microbump I/O test methods using 29nm process and TSV. In Proc. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 432–433 (IEEE, 2014).
Liu, D. & Park, S. Three-dimensional and 2.5 dimensional interconnection technology: state of the art. J. Electron. Packag 136, 014001 (2014).
Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).
Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E. & LeBlanc, A. R. Design of ion-implanted MOSFET's with very small physical dimensions. IEEE J. Solid-State Circuits 9, 256–268 (1974).
Irisawa, T., Numata, T., Tezuka, T., Sugiyama, N. & Takagi, S. I. Electron transport properties of ultrathin-body and tri-gate SOI nMOSFETs with biaxial and uniaxial strain. In Proc. 2006 International Electron Devices Meeting 1–4 (IEEE, 2006).
Uchida, K. et al. Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm. In Proc. Technical Digest-International Electron Devices Meeting 47–50 (IEEE, 2002).
Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).
Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).
Tang, J. et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv. Mater. 31, 1902761 (2019).
Yu, S. Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 106, 260–285 (2018).
Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices 62, 3498–3507 (2015).
Merrikh-Bayat, F. et al. High-performance mixed-signal neurocomputing with nanoscale floating-gate memory cell arrays. IEEE Trans. Neural Netw. Learn. Syst. 29, 4782–4790 (2017).
Boyn, S. et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017).
Yoong, H. Y. et al. Epitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain‐inspired computing. Adv. Funct. Mater. 28, 1806037 (2018).
Mizrahi, A. et al. Neural-like computing with populations of superparamagnetic basis functions. Nat. Commun. 9, 1533 (2018).
Zhu, L. Q., Wan, C. J., Guo, L. Q., Shi, Y. & Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014).
van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).
Gerasimov, J. Y. et al. An evolvable organic electrochemical transistor for neuromorphic applications. Adv. Sci. 6, 1801339 (2019).
Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
Gibertini, M., Koperski, M., Morpurgo, A. & Novoselov, K. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).
Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336 (2018).
Xue, F. et al. Gate-tunable and multidirection-switchable memristive phenomena in a van der Waals ferroelectric. Adv. Mater. 31, 1901300 (2019).
Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).
Liu, Y., Huang, Y. & Duan, X. van der Waals integration before and beyond two-dimensional materials. Nature 567, 323 (2019).
Liu, S. et al. Eliminating negative‐SET behavior by suppressing nanofilament overgrowth in cation‐based memory. Adv. Mater. 28, 10623–10629 (2016).
Wang, M. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 1, 130 (2018).
Sun, L. et al. Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10, 1–7 (2019).
Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).
Zhang, F. et al. Electric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019).
Cheng, P., Sun, K. & Hu, Y. H. Memristive behavior and ideal memristor of 1T Phase MoS2 nanosheets. Nano Lett. 16, 572–576 (2015).
Liu, C. et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14, 662–667 (2019).
Ye, P. D. Steep-slope hysteresis-free negative-capacitance 2D transistors. Nat. Nanotechnol. 13, 24–28 (2018).
Si, M. et al. Steep-slope WSe2 negative capacitance field-effect transistor. Nano Lett. 18, 3682–3687 (2018).
Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).
Qiu, C. et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 361, 387–392 (2018).
Wang, L. et al. Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29, 1901106 (2019).
Wang, S. et al. A photoelectric-stimulated MoS2 transistor for neuromorphic engineering. Research 2019, 1618798 (2019).
Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).
Jackson, B. L. et al. Nanoscale electronic synapses using phase change devices. ACM J. Emerg. Technol. Comput. Syst. 9, 1–20 (2013).
Yang, C. S. et al. A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 29, 1700906 (2017).
Yang, C.-S. et al. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater. 28, 1804170 (2018).
Zhu, J. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, 1800195 (2018).
Vu, Q. A. et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016).
Vu, Q. A. et al. a high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv. Mater. 29, 1703363 (2017).
Sharbati, M. T. et al. Low-power, electrochemically tunable graphene synapses for neuromorphic computing. Adv. Mater. 30, 1802353 (2018).
Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018).
Lastras-Montaño, M. A. & Cheng, K.-T. J. N. E. Resistive random-access memory based on ratioed memristors. Nat. Electron. 1, 466–472 (2018).
Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83, 245213 (2011).
Lee, D. et al. Multibit MoS2 photoelectronic memory with ultrahigh sensitivity. Adv. Mater. 28, 9196–9202 (2016).
Lee, J. et al. Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat. Commun. 8, 14734 (2017).
Xiang, D. et al. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun. 9, 2966 (2018).
Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).
Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–5047 (2018).
Jadwiszczak, J. et al. MoS2 memtransistors fabricated by localized helium ion beam irradiation. ACS nano 13, 14262–14273 (2019).
Huh, W. et al. Synaptic barristor based on phase‐engineered 2D heterostructures. Adv. Mater. 30, 1801447 (2018).
Midya, R. et al. Anatomy of Ag/Hafnia-based selectors with 1010 nonlinearity. Adv. Mater. 29, 1604457 (2017).
Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).
Sangwan, V. et al. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. https://doi.org/10.1038/s41565-020-0647-z (2020).
John, R. A. et al. Synergistic gating of electro‐iono‐photoactive 2D chalcogenide neuristors: coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 30, 1800220 (2018).
Yang, J.-T. et al. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 30, 1801548 (2018).
Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019).
Wang, S. et al. A MoS2 /PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 31, 1806227 (2019).
Tian, H., Wang, X., Wu, F., Yang, Y. & Ren, T.-L. High performance 2D perovskite/graphene optical synapses as artificial eyes. In Proc. 2018 IEEE International Electron Devices Meeting (IEDM) 38.6.1–38.6.4 (IEEE, 2018).
Seo, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018).
Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. https://doi.org/10.1038/s41928-019-0360-9 (2020).
Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).
Lin, X. et al. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2, 274–283 (2019).
Yan, R. H., Ourmazd, A. & Lee, K. F. Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron Devices 39, 1704–1710 (1992).
Seabaugh, A. C. & Zhang, Q. Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010).
Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011).
Lembke, D., Allain, A. & Kis, A. Thickness-dependent mobility in two-dimensional MoS2 transistors. Nanoscale 7, 6255–6260 (2015).
Yu, Z. et al. Realization of room‐temperature phonon‐limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).
Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).
Liu, W. et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13, 1983–1990 (2013).
Cui, Y. et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv. Mater. 27, 5230–5234 (2015).
Liu, T. et al. Crested two-dimensional transistors. Nat. Nanotechnol. 14, 223–226 (2019).
Zhu, W., Perebeinos, V., Freitag, M. & Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235402 (2009).
Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).
Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).
Khan, A. I., Yeung, C. W., Chenming, H. & Salahuddin, S. Ferroelectric negative capacitance MOSFET: Capacitance tuning & antiferroelectric operation. In Proc. 2011 IEEE International Electron Devices Meeting (IEDM) 111.3.1.–11.3.4. (IEEE, 2011).
Yu, Z. et al. Negative capacitance 2D MoS2 transistors with sub-60mV/dec subthreshold swing over 6 orders, 250 μA/μm current density, and nearly-hysteresis-free. In Proc. 2017 IEEE International Electron Devices Meeting (IEDM) 23.26.21–23.26.24 (IEEE, 2017).
Muratore, C. et al. Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl Phys. Lett. 104, 261604 (2014).
Ji, J. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352 (2016).
Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
Liu, Y., Duan, X., Huang, Y. & Duan, X. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018).
Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2012).
Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).
Xia, F., Perebeinos, V., Lin, Y.-M., Wu, Y. & Avouris, P. The origins and limits of metal–graphene junction resistance. Nat. Nanotechnol. 6, 179–184 (2011).
Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).
Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).
Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).
Lee, G.-H. et al. Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS nano 9, 7019–7026 (2015).
Zhao, Y. et al. Passivation of black phosphorus via self‐assembled organic monolayers by van der Waals epitaxy. Adv. Mater. 29, 1603990 (2017).
He, D. et al. High-performance black phosphorus field-effect transistors with long-term air stability. Nano Lett. 19, 331–337 (2018).
Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).
Li, W. et al. Uniform and ultrathin high-k gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).
Cheng, R. et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad. Sci. USA 109, 11588–11592 (2012).
Yang, T. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8, 1906 (2017).
Xie, L., Jiao, L. & Dai, H. Selective etching of graphene edges by hydrogen plasma. J. Am. Chem. Soc. 132, 14751–14753 (2010).
Ryu, G. H. et al. Striated 2D lattice with sub‐nm 1D etch channels by controlled thermally induced phase transformations of PdSe2. Adv. Mater. 31, 1904251 (2019).
Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).
Kang, M., Gonugondla, S. K., Patil, A. & Shanbhag, N. R. A multi-functional in-memory inference processor using a standard 6T SRAM array. IEEE J. Solid-State Circuits 53, 642–655 (2018).
Sim, J. et al. A 1.42TOPS/W deep convolutional neural network recognition processor for intelligent IoE system. In Proc. 2016 IEEE International Solid-State Circuits Conference (ISSCC) 264–265 (IEEE, 2016).
Zhang, J., Wang, Z. & Verma, N. In-memory computation of a machine-learning classifier in a standard 6T SRAM array. IEEE J. Solid-State Circuits 52, 915–924 (2017).
Hills, G. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595–602 (2019).
Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).
Yang, Z. et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 27, 3748–3754 (2015).
Avsar, A. et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-Effect transistors. ACS Nano 9, 4138–4145 (2015).
Xia, F. et al. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).
Kamalakar, M. et al. Low schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts. Small 11, 2209–2216 (2015).
Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).
Wu, J. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530–534 (2017).
Lu, H. & Seabaugh, A. Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2, 44–49 (2014).
Kim, S. et al. Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15, 203–206 (2020).
Knoll, L. et al. Inverters with strained Si nanowire complementary tunnel field-effect transistors. IEEE Electron Device Lett. 34, 813–815 (2013).
Ganjipour, B. et al. Tunnel field-effect transistors based on InP-GaAs heterostructure nanowires. ACS Nano 6, 3109–3113 (2012).
Gandhi, R. et al. CMOS-compatible vertical-silicon-nanowire Gate-All-Around p-type tunneling FETs with 50-mV/decade subthreshold swing. IEEE Electron Device Lett. 32, 1504–1506 (2011).
Dewey, G. et al. Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. In. Proc. 2011 International Electron Devices Meet 33.36.31–33.36.34 (IEEE, 2011).
Leonelli, D. et al. Performance enhancement in multi-gate tunneling field effect transistors by scaling the Fin-width. Jpn. J. Appl. Phys. 49, 04DC10 (2010).
Jeon, K. et al. Si tunnel transistors with a novel silicided source and 46 mV/dec swing. In Proc. 2010 Symposium VLSI Technology 121–122 (IEEE, 2010).
Kim, S. et al. Germanium-source tunnel field effect transistors with record high ION/IOFF. In Proc. 2009 Symposium VLSI Technology 178–179 (IEEE, 2009).
Lee, M.-H. et al. Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs. In Proc. 2016 IEEE International Electron Devices Meeting (IEDM) 12.11.11–12.11. 14 (IEEE, 2016).
Jo, J. & Shin, C. Negative capacitance field effect transistor with hysteresis-free Sub-60-mV/decade switching. IEEE Electron Device Lett. 37, 245–248 (2016).
Wang, T. Y. et al. Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. 7, 1903480 (2020).
Bessonov, A. A. et al. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2015).
Tian, H. et al. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano 11, 12247–12256 (2017).
Tian, H. et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 28, 4991–4997 (2016).
Tian, H. et al. Emulating bilingual synaptic response using a junction-based artificial synaptic device. ACS Nano 11, 7156–7163 (2017).
Zhong, Y. et al. Selective UV‐gating organic memtransistors with modulable levels of synaptic plasticity. Adv. Electron. Mater. 6, 1900955 (2020).
Liu, Y. H., Zhu, L. Q., Feng, P., Shi, Y. & Wan, Q. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv. Mater. 27, 5599–5604 (2015).
Yang, Y., He, Y., Nie, S., Shi, Y. & Wan, Q. Light stimulated IGZO-based electric-double-layer transistors for photoelectric neuromorphic devices. IEEE Electron Device Lett. 39, 897–900 (2018).
He, Y., Yang, Y., Nie, S., Liu, R. & Wan, Q. Electric-double-layer transistors for synaptic devices and neuromorphic systems. J. Mater. Chem. C. 6, 5336–5352 (2018).
Lanza, M. et al. Recommended methods to study resistive switching devices. Adv. Electron. Mater. 5, 1800143 (2019).
Kuzum, D., Yu, S. & Wong, H. P. Synaptic electronics: materials, devices and applications. Nanotechnology 24, 382001 (2013).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (61925402, 61851402 and 61734003), Science and Technology Commission of Shanghai Municipality (19JC1416600), National Key Research and Development Program (2017YFB0405600), Shanghai Education Development Foundation and Shanghai Municipal Education Commission Shuguang Program (18SG01).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, C., Chen, H., Wang, S. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020). https://doi.org/10.1038/s41565-020-0724-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-020-0724-3
This article is cited by
-
Interspecies-chimera machine vision with polarimetry for real-time navigation and anti-glare pattern recognition
Nature Communications (2024)
-
All-2D CVD-grown semiconductor field-effect transistors with van der Waals graphene contacts
npj 2D Materials and Applications (2024)
-
On non-von Neumann flexible neuromorphic vision sensors
npj Flexible Electronics (2024)
-
The future of two-dimensional semiconductors beyond Moore’s law
Nature Nanotechnology (2024)
-
Metal-organic framework single crystal for in-memory neuromorphic computing with a light control
Communications Materials (2024)