Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Guiding the design space for nanotechnology to advance sustainable crop production

Abstract

The globally recognized need to advance more sustainable agriculture and food systems has motivated the emergence of transdisciplinary solutions, which include methodologies that utilize the properties of materials at the nanoscale to address extensive and inefficient resource use. Despite the promising prospects of these nanoscale materials, the potential for large-scale applications directly to the environment and to crops necessitates precautionary measures to avoid unintended consequences. Further, the effects of using engineered nanomaterials (ENMs) in agricultural practices cascade throughout their life cycle and include effects from upstream-embodied resources and emissions from ENM production as well as their potential downstream environmental implications. Building on decades-long research in ENM synthesis, biological and environmental interactions, fate, transport and transformation, there is the opportunity to inform the sustainable design of nano-enabled agrochemicals. Here we perform a screening-level analysis that considers the system-wide benefits and costs for opportunities in which ENMs can advance the sustainability of crop-based agriculture. These include their on-farm use as (1) soil amendments to offset nitrogen fertilizer inputs, (2) seed coatings to increase germination rates and (3) foliar sprays to enhance yields. In each analysis, the nano-enabled alternatives are compared against the current practice on the basis of performance and embodied energy. In addition to identifying the ENM compositions and application approaches with the greatest potential to sustainably advance crop production, we present a holistic, prospective, systems-based approach that promotes emerging alternatives that have net performance and environmental benefits.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: From an embodied energy perspective, ENM soil amendments at the currently studied application concentrations do not present a sustainable alternative to conventional fertilization practice.
Fig. 2: From an embodied energy perspective, Zn, ZnO, Cu and CuO nanoparticles offer the most promising seed-coating alternatives.
Fig. 3: From an embodied energy perspective, Zn and ZnO nanoparticles offer the most promising foliar treatments.

Data availability

All data sources are indicated in the paper, and included in Supplementary Data 16.

References

  1. 1.

    The Future of Food and Agriculture: Trends and Challenges (Food and Agriculture Organization of the United Nations, 2017).

  2. 2.

    Transforming our World: The 2030 Agenda for Sustainable Development (United Nations 2015).

  3. 3.

    NAE Grand Challenges for Engineering (National Academy of Sciences, Engineering and Medicine, 2017).

  4. 4.

    James J. Elser & Matthew S. Platz. Closing the Human Phosphorus Cycle (National Science Foundation, 2015).

  5. 5.

    World Fertilizer Trends and Outlook to 2020: Summary Report (Food and Agriculture Organization of the United Nations, 2017).

  6. 6.

    Atwood, D. & Paisley-Jones, C. Pesticides Industry Sales and Usage: 2008–2012 Market Estimates (United States Environmental Protection Agency, 2017).

  7. 7.

    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    CAS  Google Scholar 

  8. 8.

    Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 105011 (2014).

    Google Scholar 

  9. 9.

    Roberts, T. L. & Johnston, A. E. Phosphorus use efficiency and management in agriculture. Resour. Conserv. Recycl. 105, 275–281 (2015).

    Google Scholar 

  10. 10.

    Pimentel, D. & Levitan, L. Pesticides: amounts applied and amounts reaching pests. Bioscience 36, 86–91 (1986).

    CAS  Google Scholar 

  11. 11.

    Ghormade, V., Deshpande, M. V. & Paknikar, K. M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 29, 792–803 (2011).

    CAS  Google Scholar 

  12. 12.

    Rodrigues, S. M. et al. Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ. Sci. Nano 4, 767–781 (2017).

    CAS  Google Scholar 

  13. 13.

    De Oliveira, J. L., Campos, E. V. R., Bakshi, M., Abhilash, P. C. & Fraceto, L. F. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol. Adv. 32, 1550–1561 (2014).

    Google Scholar 

  14. 14.

    Schnitkey, G. Historic fertilizer, seed, and chemical costs with 2019 projections. Farmdoc Daily 8, 102 (2018).

    Google Scholar 

  15. 15.

    Farm Production Expenditures: 2017 Summary (United Sates Department of Agriculture, 2018).

  16. 16.

    Kanter, D. R. & Searchinger, T. D. A technology-forcing approach to reduce nitrogen pollution. Nat. Sustainability 1, 544–552 (2018).

    Google Scholar 

  17. 17.

    Rabalais, N. N., Turner, R. E., Diaz, R. J. & Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 66, 1528–1537 (2009).

    Google Scholar 

  18. 18.

    Klarich, K. L. et al. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment. Environ. Sci. Technol. Lett. 4, 168–173 (2017).

    CAS  Google Scholar 

  19. 19.

    Sutton, M. A. et al. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (Cambridge Univ. Press, 2011).

  20. 20.

    Science Breakthroughs to Advance Food and Agricultural Research by 2030 (National Academies of Sciences, Engineering and Medicine, 2018).

  21. 21.

    Tracking Industrial Energy Efficiency and CO 2 Emissions (IEA, 2007)

  22. 22.

    Pattabathula, V. & Richardson, J. Introduction to Ammonia Production (AIChE, 2016).

  23. 23.

    Fertilizer Use and Price (United States Department of Agriculture, Economic Research Service, 2019).

  24. 24.

    Kermeli, K., Worrell, E., Graus, W. & Corsten, M. Energy Efficiency and Cost Saving Opportunities for Ammonia and Nitrogenous Fertilizer Production (Energy Star, 2017).

  25. 25.

    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    CAS  Google Scholar 

  26. 26.

    Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R. & Schuster, E. W. Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot. 35, 64–70 (2012).

    CAS  Google Scholar 

  27. 27.

    Rai, M., Ribeiro, C., Mattoso, L. & Duran, N. Nanotechnologies in Food and Agriculture (Springer, 2015).

  28. 28.

    Parisi, C., Vigani, M. & Rodríguez-Cerezo, E. Agricultural nanotechnologies: what are the current possibilities? Nano Today 10, 124–127 (2015).

    CAS  Google Scholar 

  29. 29.

    Lichtfouse, E. Nanoscience in Food and Agriculture 3 (Sustainable Agriculture Reviews Vol. 23, Springer, 2016).

  30. 30.

    Jain, A., Ranjan, S., Dasgupta, N. & Ramalingam, C. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit. Rev. Food Sci. Nutr. 58, 297–317 (2018).

    CAS  Google Scholar 

  31. 31.

    He, X., Deng, H. & Hwang, H. The current application of nanotechnology in food and agriculture. J. Food Drug Anal. 17, 1–21 (2019).

    Google Scholar 

  32. 32.

    Giraldo, J. P., Wu, H., Newkirk, G. M. & Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019).

    CAS  Google Scholar 

  33. 33.

    Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).

    CAS  Google Scholar 

  34. 34.

    Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).

    CAS  Google Scholar 

  35. 35.

    Yin, J., Wang, Y. & Gilbertson, L. M. Opportunities to advance sustainable design of nano-enabled agriculture identified through a literature review. Environ. Sci. Nano 5, 11–26 (2018).

    CAS  Google Scholar 

  36. 36.

    Hofmann, T. et al. Advancing nanotechnology-enabled plant agriculture responsibly. Nat. Food (in the press).

  37. 37.

    Monreal, C. M., DeRosa, M., Mallubhotla, S. C., Bindraban, P. S. & Dimkpa, C. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol. Fertil. Soils 52, 423–437 (2016).

    CAS  Google Scholar 

  38. 38.

    Chhipa, H. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 15, 15–22 (2017).

    CAS  Google Scholar 

  39. 39.

    Dubey, A. & Mailapalli, D. R. in Sustainable Agriculture Reviews (ed. Lichtfouse, E.) 307–330 (Sustainable Agriculture Reviews Vol. 19, Springer, 2016).

  40. 40.

    Peters, R. J. et al. Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci. Technol. 54, 155–164 (2016).

    CAS  Google Scholar 

  41. 41.

    Gogos, A., Knauer, K. & Bucheli, T. D. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J. Agric. Food Chem. 60, 9781–9792 (2012).

    CAS  Google Scholar 

  42. 42.

    Fraceto, L. F. et al. Nanotechnology in agriculture: which innovation potential does it have? Front. Environ. Sci. 4, 20 (2016).

    Google Scholar 

  43. 43.

    Arruda, S. C. C., Silva, A. L. D., Galazzi, R. M., Azevedo, R. A. & Arruda, M. A. Z. Nanoparticles applied to plant science: a review. Talanta 131, 693–705 (2015).

    Google Scholar 

  44. 44.

    Corn Prices—59 Year Historical Chart (Macrotrends, accessed 6 October 2019); https://www.macrotrends.net/2532/corn-prices-historical-chart-data

  45. 45.

    Wang, T., Ayesh, A., Hennessy, D. & Feng, H. Cropland Reflux: Trends in and Locations of Land Use Change in the Dakotas, 2007–2012 and 2012–2017 (South Dakota Board of Regents, 2018).

  46. 46.

    Miller, S. A., Landis, A. E. & Theis, T. L. Feature: environmental trade-offs of biobased production. Environ. Sci. Technol. 41, 5176–5182 (2007).

    CAS  Google Scholar 

  47. 47.

    Galloway, J., Theis, T. & Doering, O. Managing nitrogen pollution in the United States: a success, a challenge, and an action plan. EM Mag. 65, 6–11 (2015).

    Google Scholar 

  48. 48.

    Hoekstra, A. C in The Water We Eat: Combining Virtual Water and Water Footprints (eds Antonelli, M. & Greco, F.) 35–48 (Springer, 2015).

  49. 49.

    Urso, J. H. & Gilbertson, L. M. Atom conversion efficiency: a new sustainability metric applied to nitrogen and phosphorus use in agriculture. ACS Sustainable Chem. Eng. 6, 4453–4463 (2018).

    CAS  Google Scholar 

  50. 50.

    Committee on Environment and Natural Resources. Scientific Assessment of Hypoxia in U.S. Coastal Waters (Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology, 2010).

  51. 51.

    Liu, R. & Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 514, 131–139 (2015).

    CAS  Google Scholar 

  52. 52.

    Shalaby, T. A. et al. Nanoparticles, soils, plants and sustainable agriculture. in Nanoscience in Food and Agriculture 1 (ed. Lichtfouse, E). 283–312 (Sustainable Agriculture Reviews Vol. 20, Springer, 2016).

  53. 53.

    Tolaymat, T., Genaidy, A., Abdelraheem, W., Dionysiou, D. & Andersen, C. The effects of metallic engineered nanoparticles upon plant systems: an analytic examination of scientific evidence. Sci. Total Environ. 579, 93–106 (2017).

    CAS  Google Scholar 

  54. 54.

    Zuverza-Mena, N. et al. Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses—a review. Plant Physiol. Biochem. 110, 236–264 (2017).

    CAS  Google Scholar 

  55. 55.

    Rizwan, M. et al. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J. Hazard. Mater. 322, 2–16 (2017).

    CAS  Google Scholar 

  56. 56.

    Mukherjee, A. et al. Carbon nanomaterials in agriculture: a critical review. Front. Plant Sci. 7, 172 (2016).

    Google Scholar 

  57. 57.

    Suppan, S. Applying Nanotechnology to Fertilizer: Rationales, research, risks and regulatory challenges (Institute for Agriculture and Trade Policy, 2017).

  58. 58.

    Smith, A. M. & Gilbertson, L. M. Rational ligand design to improve agrochemical delivery efficiency and advance agriculture sustainability. ACS Sustain. Chem. Eng. 6, 13599–13610 (2018).

    CAS  Google Scholar 

  59. 59.

    Eckelman, M. J., Mauter, M. S., Isaacs, J. A. & Elimelech, M. New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotubes. Environ. Sci. Technol. 46, 2902–2910 (2012).

    CAS  Google Scholar 

  60. 60.

    Pourzahedi, L. & Eckelman, M. J. Environmental life cycle assessment of nanosilver-enabled bandages. Environ. Sci. Technol. 49, 361–368 (2014).

    Google Scholar 

  61. 61.

    Dahlben, L. J., Eckelman, M. J., Hakimian, A. & Isaacs, J. Environmental life cycle assessment of a carbon nanotube-enabled semiconductor device. Environ. Sci. Technol. 47, 8471–8478 (2013).

    CAS  Google Scholar 

  62. 62.

    Huijbregts, M. A. et al. Cumulative energy demand as predictor for the environmental burden of commodity production. Environ. Sci. Technol. 44, 2189–2196 (2010).

    CAS  Google Scholar 

  63. 63.

    Pourzahedi, L., Zhai, P., Isaacs, J. A. & Eckelman, M. J. Life cycle energy benefits of carbon nanotubes for electromagnetic interference (EMI) shielding applications. J. Cleaner Prod. 142, 1971–1978 (2017).

    CAS  Google Scholar 

  64. 64.

    Zhai, P., Isaacs, J. A. & Eckelman, M. J. Net energy benefits of carbon nanotube applications. Appl. Energy 173, 624–634 (2016).

    CAS  Google Scholar 

  65. 65.

    Falinski, M. M. et al. A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations. Nat. Nanotechnol. 13, 621–623 (2018).

    Google Scholar 

  66. 66.

    Chopra, S. S. & Theis, T. L. Comparative cradle-to-gate energy assessment of indium phosphide and cadmium selenide quantum dot displays. Environ. Sci. Nano 4, 244–254 (2017).

    CAS  Google Scholar 

  67. 67.

    Gao, X. et al. CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil. Environ. Sci. Technol. 52, 2888–2897 (2018).

    CAS  Google Scholar 

  68. 68.

    Kashyap, P. L., Xiang, X. & Heiden, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol. 77, 36–51 (2015).

    CAS  Google Scholar 

  69. 69.

    Gao, X., Spielman-Sun, E., Rodrigues, S. M., Casman, E. A. & Lowry, G. V. Time and nanoparticle concentration affect the extractability of Cu from CuO NP-amended soil. Environ. Sci. Technol. 51, 2226–2234 (2017).

    CAS  Google Scholar 

  70. 70.

    Bastani, S. et al. Nano iron (Fe) complex is an effective source of Fe for tobacco plants grown under low Fe supply. J. Soil Sci. Plant Nutr. 18, 524–541 (2018).

    CAS  Google Scholar 

  71. 71.

    Montalvo, D., McLaughlin, M. J. & Degryse, F. Efficacy of hydroxyapatite nanoparticles as phosphorus fertilizer in andisols and oxisols. Soil Sci. Soc. Am. J. 79, 551–558 (2015).

    CAS  Google Scholar 

  72. 72.

    Adrees, M. et al. Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles. Chemosphere 238, 124681 (2020).

    CAS  Google Scholar 

  73. 73.

    Dimkpa, C. O. et al. Addition–omission of zinc, copper, and boron nano and bulk oxide particles demonstrate element and size-specific response of soybean to micronutrients exposure. Sci. Total Environ. 665, 606–616 (2019).

    CAS  Google Scholar 

  74. 74.

    Wang, Y. et al. Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. J. Environ. Manag. 241, 319–327 (2019).

    Google Scholar 

  75. 75.

    Gavankar, S., Suh, S. & Keller, A. A. The role of scale and technology maturity in life cycle assessment of emerging technologies: a case study on carbon nanotubes. J. Ind. Ecol. 19, 51–60 (2015).

    CAS  Google Scholar 

  76. 76.

    Kushnir, D. & Sandén, B. A. Energy requirements of carbon nanoparticle production. J. Ind. Ecol. 12, 360–375 (2008).

    CAS  Google Scholar 

  77. 77.

    Shi, W., Xue, K., Meshot, E. R. & Plata, D. L. The carbon nanotube formation parameter space: data mining and mechanistic understanding for efficient resource use. Green Chem. 19, 3787–3800 (2017).

    CAS  Google Scholar 

  78. 78.

    Ashraf, M. & Foolad, M. R. Pre-sowing seed treatment—a shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv. Agron. 88, 223–271 (2005).

    Google Scholar 

  79. 79.

    Rakshit, A. & Singh, H. B. Advances in Seed Priming (Springer, 2018).

  80. 80.

    Carlos, A. Parera & Daniel J. Cantliffe. Presowing seed priming. Horticultural Rev. 51, 109 (2010).

    Google Scholar 

  81. 81.

    Liu, R., Zhang, H. & Lal, R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut. 227, 42 (2016).

    Google Scholar 

  82. 82.

    Mondal, A., Basu, R., Das, S. & Nandy, P. Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J. Nanopart. Res. 13, 4519–4528 (2011).

    CAS  Google Scholar 

  83. 83.

    Raliya, R., Saharan, V., Dimkpa, C. & Biswas, P. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J. Agric. Food Chem. 66, 6487–6503 (2017).

    Google Scholar 

  84. 84.

    Li, P., Du, Y., Huang, L., Mitter, N. & Xu, Z. P. Nanotechnology promotes the R&D of new-generation micronutrient foliar fertilizers. RSC Adv. 6, 69465–69478 (2016).

    CAS  Google Scholar 

  85. 85.

    Tripathi, D. K. et al. An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem. 110, 2–12 (2017).

    CAS  Google Scholar 

  86. 86.

    Eichert, T., Kurtz, A., Steiner, U. & Goldbach, H. E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 134, 151–160 (2008).

    CAS  Google Scholar 

  87. 87.

    Wang, W.-N., Tarafdar, J. C. & Biswas, P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J. Nanopart. Res. 15, 1417 (2013).

    Google Scholar 

  88. 88.

    The Global Market for Nanotechnology and Nanomaterials (Future Markets, 2016).

  89. 89.

    Ettrup, K. et al. Development of comparative toxicity potentials of TiO2 nanoparticles for use in life cycle assessment. Environ. Sci. Technol. 51, 4027–4037 (2017).

    CAS  Google Scholar 

  90. 90.

    Pini, M., Salieri, B., Ferrari, A. M., Nowack, B. & Hischier, R. Human health characterization factors of nano-TiO2 for indoor and outdoor environments. Int. J. Life Cycle Assess. 21, 1452–1462 (2016).

    CAS  Google Scholar 

  91. 91.

    Salieri, B., Righi, S., Pasteris, A. & Olsen, S. I. Freshwater ecotoxicity characterisation factor for metal oxide nanoparticles: a case study on titanium dioxide nanoparticle. Sci. Total Environ. 505, 494–502 (2015).

    CAS  Google Scholar 

  92. 92.

    Deng, Y. et al. Deriving characterization factors on freshwater ecotoxicity of graphene oxide nanomaterial for life cycle impact assessment. Int. J. Life Cycle Assess. 22, 222–236 (2017).

    CAS  Google Scholar 

  93. 93.

    Pu, Y., Tang, F., Adam, P.-M., Laratte, B. & Ionescu, R. E. Fate and characterization factors of nanoparticles in seventeen subcontinental freshwaters: a case study on copper nanoparticles. Environ. Sci. Technol. 50, 9370–9379 (2016).

    CAS  Google Scholar 

  94. 94.

    Walser, T., Demou, E., Lang, D. J. & Hellweg, S. Prospective environmental life cycle assessment of nanosilver T-shirts. Environ. Sci. Technol. 45, 4570–4578 (2011).

    CAS  Google Scholar 

  95. 95.

    Pourzahedi, L. & J. Eckelman, M. Comparative life cycle assessment of silver nanoparticle synthesis routes. Environ. Sci. Nano 2, 361–369 (2015).

    CAS  Google Scholar 

  96. 96.

    Pati, P., McGinnis, S. & J. Vikesland, P. Waste not want not: life cycle implications of gold recovery and recycling from nanowaste. Environ. Sci. Nano 3, 1133–1143 (2016).

    CAS  Google Scholar 

  97. 97.

    Pourzahedi, L., Vance, M. & Eckelman, M. J. Life cycle assessment and release studies for 15 nanosilver-enabled consumer products: investigating hotspots and patterns of contribution. Environ. Sci. Technol. 51, 7148–7158 (2017).

    CAS  Google Scholar 

  98. 98.

    Hicks, A. L., Gilbertson, L. M., Yamani, J. S., Theis, T. L. & Zimmerman, J. B. Life cycle payback estimates of nanosilver enabled textiles under different silver loading, release, and laundering scenarios informed by literature review. Environ. Sci. Technol. 49, 7529–7542 (2015).

    CAS  Google Scholar 

  99. 99.

    Arvidsson, R. Risk assessments show engineered nanomaterials to be of low environmental concern. Environ. Sci. Technol. 52, 2436–2437 (2018).

    CAS  Google Scholar 

  100. 100.

    Wu, H., Shabala, L., Shabala, S. & Giraldo, J. P. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environ. Sci. Nano 5, 1567–1583 (2018).

    CAS  Google Scholar 

  101. 101.

    Judy, J. D. et al. Nanomaterials in biosolids inhibit nodulation, shift microbial community composition, and result in increased metal uptake relative to bulk/dissolved metals. Environ. Sci. Technol. 49, 8751–8758 (2015).

    CAS  Google Scholar 

  102. 102.

    Colman, B. P. et al. Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS ONE 8, e57189 (2013).

    CAS  Google Scholar 

  103. 103.

    Simonin, M. et al. Negative effects of copper oxide nanoparticles on carbon and nitrogen cycle microbial activities in contrasting agricultural soils and in presence of plants. Front. Microbiol. 9, 3102 (2018).

    Google Scholar 

  104. 104.

    Ge, Y., Schimel, J. P. & Holden, P. A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 45, 1659–1664 (2011).

    CAS  Google Scholar 

  105. 105.

    Berg, J., Tom‐Petersen, A. & Nybroe, O. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Lett. Appl. Microbiol. 40, 146–151 (2005).

    CAS  Google Scholar 

  106. 106.

    Guo, J. et al. Copper oxide nanoparticles induce lysogenic bacteriophage and metal-resistance genes in pseudomonas aeruginosa PAO1. ACS Appl. Mater. Interfaces 9, 22298–22307 (2017).

    CAS  Google Scholar 

  107. 107.

    Su, Y. et al. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ. Sci. Nano 6, 2311–2331 (2019).

    CAS  Google Scholar 

  108. 108.

    Laughton, S. et al. Persistence of copper-based nanoparticle-containing foliar sprays in Lactuca sativa (lettuce) characterized by spICP-MS. J. Nanopart. Res. 21, 174 (2019).

    Google Scholar 

  109. 109.

    Bouwmeester, H. et al. Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 5, 4091–4103 (2011).

    CAS  Google Scholar 

  110. 110.

    Williams, K. et al. Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology 9, 279–289 (2015).

    CAS  Google Scholar 

  111. 111.

    DeLoid, G. M. et al. An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Part. Fibre Toxicol. 14, 40 (2017).

    Google Scholar 

  112. 112.

    Pourzahedi, L. et al. Life cycle considerations of nano-enabled agrochemicals: are today’s tools up to the task? Environ. Sci. Nano 5, 1057–1069 (2018).

    CAS  Google Scholar 

  113. 113.

    Wigger, H., Wohlleben, W. & Nowack, B. Redefining environmental nanomaterial flows: Consequences of the regulatory nanomaterial definition on the results of environmental exposure models. Environ. Sci. Nano 5, 1372–1385 (2018).

    CAS  Google Scholar 

  114. 114.

    Kong, W. et al. Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 14, 927–938 (2019).

    CAS  Google Scholar 

  115. 115.

    Zhang, Y. & Liu, H. How did climate drying reduce ecosystem carbon storage in the forest–steppe ecotone? A case study in Inner Mongolia, China. J. Plant Res. 123, 543–549 (2010).

    CAS  Google Scholar 

  116. 116.

    Sun, Z., Mou, X. & Liu, J. S. Effects of flooding regimes on the decomposition and nutrient dynamics of Calamagrostis angustifolia litter in the Sanjiang Plain of China. Environ. Earth Sci. 66, 2235–2246 (2012).

    Google Scholar 

  117. 117.

    Soil Bulk Density/Moisture/Aeration (Natural Resources Conservation Services, 2019).

  118. 118.

    Arshad, M. A., Lowery, B. & Grossman, B. in Methods for Assessing Soil Quality (eds Doran, J. W. & Jones, A. J.) 123–141 (Soil Science Society of America Special Publication Vol. 49, 1996).

  119. 119.

    Amenumey, S. E. & Capel, P. D. Fertilizer consumption and energy input for 16 crops in the United States. Nat. Resour. Res. 23, 299–309 (2014).

    CAS  Google Scholar 

  120. 120.

    Quick Stats (USDA National Agricultural Statistics Service, accessed 30 September 2019); https://quickstats.nass.usda.gov/

  121. 121.

    Grubb, G. F. & Bakshi, B. R. Life cycle of titanium dioxide nanoparticle production: impact of emissions and use of resources. J. Ind. Ecol. 15, 81–95 (2011).

    CAS  Google Scholar 

  122. 122.

    Osterwalder, N., Capello, C., Hungerbühler, K. & Stark, W. J. Energy consumption during nanoparticle production: how economic is dry synthesis? J. Nanopart. Res. 8, 1 (2006).

    CAS  Google Scholar 

  123. 123.

    Healy, M. L., Dahlben, L. J. & Isaacs, J. A. Environmental assessment of single-walled carbon nanotube processes. J. Ind. Ecol. 12, 376–393 (2008).

    CAS  Google Scholar 

  124. 124.

    Anctil, A., Babbitt, C. W., Raffaelle, R. P. & Landi, B. J. Material and energy intensity of fullerene production. Environ. Sci. Technol. 45, 2353–2359 (2011).

    CAS  Google Scholar 

  125. 125.

    Arvidsson, R., Kushnir, D., Sandén, B. A. & Molander, S. Prospective life cycle assessment of graphene production by ultrasonication and chemical reduction. Environ. Sci. Technol. 48, 4529–4536 (2014).

    CAS  Google Scholar 

  126. 126.

    Pati, P., McGinnis, S. & Vikesland, P. J. Life cycle assessment of ‘green’ nanoparticle synthesis methods. Environ. Eng. Sci. 31, 410–420 (2014).

    CAS  Google Scholar 

  127. 127.

    Leng, W., Pati, P. & Vikesland, P. J. Room temperature seed mediated growth of gold nanoparticles: mechanistic investigations and life cycle assessment. Environ. Sci. Nano 2, 440–453 (2015).

    CAS  Google Scholar 

  128. 128.

    Slotte, M., Metha, G. & Zevenhoven, R. Life cycle indicator comparison of copper, silver, zinc and aluminum nanoparticle production through electric arc evaporation or chemical reduction. Int. J. Energy Environ. Eng. 6, 233–243 (2015).

    CAS  Google Scholar 

  129. 129.

    Gernhart, Z. C., Marin, C. M., Burke, J. J., Sonnenfeld, K. O. & Cheung, C. L. Additive-free synthesis of cerium oxide nanorods with reaction temperature-tunable aspect ratios. J. Am. Ceram. Soc. 98, 39–43 (2015).

    CAS  Google Scholar 

  130. 130.

    Masui, T. et al. Synthesis of cerium oxide nanoparticles by hydrothermal crystallization with citric acid. J. Mater. Sci. Lett. 21, 489–491 (2002).

    CAS  Google Scholar 

  131. 131.

    Wang, Y. et al. Divergence in response of lettuce (var. ramosa Hort) to copper oxide nanoparticles/microparticles as potential agricultural fertilizer. Environ. Pollut. Bioavailab. 31, 80–84 (2019).

    CAS  Google Scholar 

  132. 132.

    Medina-Velo, I. A. et al. Comparison of the effects of commercial coated and uncoated ZnO nanomaterials and Zn compounds in kidney bean (Phaseolus vulgaris) plants. J. Hazard. Mater. 332, 214–222 (2017).

    CAS  Google Scholar 

  133. 133.

    Rawat, S. et al. Differential physiological and biochemical impacts of nano vs micron Cu at two phenological growth stages in bell pepper (Capsicum annuum) plant. NanoImpact 14, 100161 (2019).

    Google Scholar 

  134. 134.

    Reddy Pullagurala, V. L. et al. Finding the conditions for the beneficial use of ZnO nanoparticles towards plants—a review. Environ. Pollut. 241, 1175–1181 (2018).

    CAS  Google Scholar 

  135. 135.

    Xu, J., Luo, X., Wang, Y. & Feng, Y. Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community. Environ. Sci. Pollut. Res. Int. 25, 6026–6035 (2018).

    CAS  Google Scholar 

  136. 136.

    Bare, J. TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technol. Environ. Policy 13, 687–696 (2011).

    CAS  Google Scholar 

  137. 137.

    Anjum, N. A. et al. Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci. Total Environ. 472, 834–841 (2014).

    CAS  Google Scholar 

  138. 138.

    Pandey, K. et al. Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS ONE 13, e0202274 (2018).

    Google Scholar 

  139. 139.

    Feizi, H., Moghaddam, P. R., Shahtahmassebi, N. & Fotovat, A. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol. Trace Elem. Res. 146, 101–106 (2012).

    CAS  Google Scholar 

  140. 140.

    Wang, Q., Ma, X., Zhang, W., Pei, H. & Chen, Y. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4, 1105–1112 (2012).

    CAS  Google Scholar 

  141. 141.

    Raskar, S. V. & Laware, S. L. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J. Curr. Microbiol Appl. Sci. 3, 467–473 (2014).

    CAS  Google Scholar 

  142. 142.

    Raja, K. et al. Biogenic ZnO and Cu nanoparticles to improve seed germination quality in blackgram (Vigna mungo). Mater. Lett. 235, 164–167 (2019).

    CAS  Google Scholar 

  143. 143.

    Prasad, T. et al. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 35, 905–927 (2012).

    CAS  Google Scholar 

  144. 144.

    Sadeghi, H. & Robati, Z. Response of Cichorium intybus L. to eight seed priming methods under osmotic stress conditions. Biocat. Agric. Biotechnol. 4, 443–448 (2015).

    Google Scholar 

  145. 145.

    Afzal, I., Rauf, S., Basra, S. M. A. & Murtaza, G. Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant Soil Environ. 54, 382–388 (2008).

    CAS  Google Scholar 

  146. 146.

    Zaicou-Kunesch, C. Wheat Seed Weight Differs Between Varieties (Agriculture and Food Division, Department of Primary Industries and Regional Developments, Government of Western Australia, 2017).

  147. 147.

    Hong, J. et al. Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci. Total Environ. 563, 904–911 (2016).

    Google Scholar 

  148. 148.

    Elmer, W. H. & White, J. C. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ. Sci. Nano 3, 1072–1079 (2016).

    CAS  Google Scholar 

  149. 149.

    Raliya, R., Tarafdar, J. C. & Biswas, P. Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J. Agric. Food Chem. 64, 3111–3118 (2016).

    CAS  Google Scholar 

  150. 150.

    Naseeruddin, R. et al. Unprecedented synergistic effects of nanoscale nutrients on growth, productivity of sweet sorghum (Sorghum bicolor (L.) Moench), and nutrient biofortification. J. Agric. Food Chem. 66, 1075–1084 (2018).

    CAS  Google Scholar 

  151. 151.

    Subbaiah, L. V. et al. Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J. Agric. Food Chem. 64, 3778–3788 (2016).

    CAS  Google Scholar 

  152. 152.

    Dimkpa, C. O., White, J. C., Elmer, W. H. & Gardea-Torresdey, J. Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. J. Agric. Food Chem. 65, 8552–8559 (2017).

    CAS  Google Scholar 

  153. 153.

    Larue, C. et al. Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J. Hazard. Mater. 273, 17–26 (2014).

    CAS  Google Scholar 

  154. 154.

    Jaberzadeh, A., Moaveni, P., Moghadam, H. R. T. & Zahedi, H. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not. Bot. Horti. Agrobot. 41, 201–207 (2013).

    CAS  Google Scholar 

  155. 155.

    Arora, S. et al. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 66, 303–310 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

Funding support for L.M.G., L.P., J.B.Z., T.L.T., P.W. and G.V.L. was provided by the US Environmental Protection Agency through the STAR program (RD83558001) and the National Science Foundation (NNCI-ECCS-1542160). Funding for G.V.L., X.G. and S.L. was provided by the US National Science Foundation Cooperative Agreement EF-1266252, Center for the Environmental Implications of NanoTechnology (CEINT) and CBET-1530563, Nano for Agriculturally Relevant Materials (NanoFARM). P.W. acknowledges partial support from the Nanosystems Engineering Research Center on Nanotechnology-Enabled Water Treatment (EEC-1449500). L.M.G. recognizes support from the Gordon and Betty Moore Foundation. L. Passantino provided technical editing.

Author information

Affiliations

Authors

Contributions

L.M.G. conceived the idea and designed the research framework with G.V.L. and L.P. L.P., S.L. and X.G. gathered and analysed the data. L.P. quantified the embodied energy and life-cycle data and created the figures. L.M.G. and L.P. led the drafting and editing of the manuscript. All the authors discussed the results throughout the project development and contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Leanne M. Gilbertson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Data 1

Table 1. Embodied energy of N-fertilizers and ENMs.

Supplementary Data 2

Table 2. Life cycle inventory to calculate CED of production of CeO2 nanoparticles through hydrothermal crystallization with citric acid.

Supplementary Data 3

Table 3. Life cycle inventory to calculate CED of production of CeO2 nanoparticles through microwave hydrothermal.

Supplementary Data 4

Table 4. Range of ENMs applied to soil based on available literature.

Supplementary Data 5

Table 5. Effect of ENMs and conventional seed coatings on seed germination.

Supplementary Data 6

Table 6. Effect of ENMs and conventional chemicals on yield through foliar application.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gilbertson, L.M., Pourzahedi, L., Laughton, S. et al. Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 15, 801–810 (2020). https://doi.org/10.1038/s41565-020-0706-5

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research