Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct observation of water-mediated single-proton transport between hBN surface defects


Aqueous proton transport at interfaces is ubiquitous and crucial for a number of fields, ranging from cellular transport and signalling, to catalysis and membrane science. However, due to their light mass, small size and high chemical reactivity, uncovering the surface transport of single protons at room temperature and in an aqueous environment has so far remained out-of-reach of conventional atomic-scale surface science techniques, such as scanning tunnelling microscopy. Here, we use single-molecule localization microscopy to resolve optically the transport of individual excess protons at the interface of hexagonal boron nitride crystals and aqueous solutions at room temperature. Single excess proton trajectories are revealed by the successive protonation and activation of optically active defects at the surface of the crystal. Our observations demonstrate, at the single-molecule scale, that the solid/water interface provides a preferential pathway for lateral proton transport, with broad implications for molecular charge transport at liquid interfaces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Reactivity of hBN defects in aqueous conditions: protonation activates defects.
Fig. 2: Luminescence migration reveals proton trajectories.
Fig. 3: Large-scale mapping of proton trajectories.
Fig. 4: Mobility and segregation of protons at interfaces.

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.


  1. 1.

    Kreuer, K. D. Proton conductivity: materials and applications. Chem. Mater. 8, 610–641 (1996).

    CAS  Google Scholar 

  2. 2.

    Chen, M. et al. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer. Nat. Chem. 10, 413–419 (2018).

    Google Scholar 

  3. 3.

    Reider, G., Höfer, U. & Heinz, T. Surface diffusion of hydrogen on Si (111)7 × 7. Phys. Rev. Lett. 66, 1994–1997 (1991).

    CAS  Google Scholar 

  4. 4.

    Merte, L. R. et al. Water-mediated proton hopping on an iron oxide surface. Science 336, 889–893 (2012).

    CAS  Google Scholar 

  5. 5.

    Kumagai, T. et al. H-atom relay reactions in real space. Nat. Mater. 11, 167–172 (2012).

    CAS  Google Scholar 

  6. 6.

    Tocci, G. & Michaelides, A. Solvent-induced proton hopping at a water-oxide interface. J. Phys. Chem. Lett. 5, 474–480 (2014).

    CAS  Google Scholar 

  7. 7.

    Nagasaka, M., Kondoh, H., Amemiya, K., Ohta, T. & Iwasawa, Y. Proton transfer in a two-dimensional hydrogen-bonding network: water and hydroxyl on a Pt(111) surface. Phys. Rev. Lett. 100, 8–11 (2008).

    Google Scholar 

  8. 8.

    Grosjean, B., Bocquet, M. L. & Vuilleumier, R. Versatile electrification of two-dimensional nanomaterials in water. Nat. Commun. 10, 1656 (2019).

    Google Scholar 

  9. 9.

    Bränden, M., Sanden, T., Brzezinkski, P. & Widengren, J. Localized proton microcircuits at the biological membrane–water interface. Proc. Natl Acad. Sci. USA 103, 19766–19770 (2006).

    Google Scholar 

  10. 10.

    Cherepanov, D. A., Pohl, P., Hagen, V., Antonenko, Y. N. & Springer, A. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc. Natl Acad. Sci. USA 108, 14461–14466 (2011).

    Google Scholar 

  11. 11.

    Serowy, S. et al. Structural proton diffusion along lipid bilayers. Biophys. J. 84, 1031–1037 (2003).

    CAS  Google Scholar 

  12. 12.

    Zhang, C. et al. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc. Natl Acad. Sci. USA 109, 9744–9749 (2012).

    CAS  Google Scholar 

  13. 13.

    Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).

    CAS  Google Scholar 

  14. 14.

    Michaelides, A. & Hu, P. Catalytic water formation on platinum: a first-principles study. J. Am. Chem. Soc. 123, 4235–4242 (2001).

    CAS  Google Scholar 

  15. 15.

    Cortright, R. D., Davda, R. R. & Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964–967 (2002).

    CAS  Google Scholar 

  16. 16.

    Schmidt-Rohr, K. & Chen, Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 7, 75–83 (2008).

    CAS  Google Scholar 

  17. 17.

    Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R. & McGrath, J. E. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4612 (2004).

    CAS  Google Scholar 

  18. 18.

    Kreuer, K.-D., Paddison, S. J., Spohr, E. & Schuster, M. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637–4678 (2004).

    CAS  Google Scholar 

  19. 19.

    Ling, X., Bonn, M., Domke, K. F. & Parekh, S. H. Correlated interfacial water transport and proton conductivity in perfluorosulfonic acid membranes. Proc. Natl Acad. Sci. USA 116, 8715–8720 (2019).

    CAS  Google Scholar 

  20. 20.

    Boysen, D. A., Uda, T., Chisholm, C. R. I. & Haile, S. M. High-performance solid acid fuel cells through humidity stabilization. Science 303, 68–70 (2004).

    CAS  Google Scholar 

  21. 21.

    Gopinadhan, K. et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363, 145–148 (2019).

    CAS  Google Scholar 

  22. 22.

    Lee, C. Y., Choi, W., Han, J.-H. & Strano, M. S. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329, 1320–1324 (2010).

    CAS  Google Scholar 

  23. 23.

    Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).

    CAS  Google Scholar 

  24. 24.

    Zhou, K. G. et al. Electrically controlled water permeation through graphene oxide membranes. Nature 559, 236–240 (2018).

    CAS  Google Scholar 

  25. 25.

    Feng, J. et al. Imaging of optically active defects with nanometer resolution. Nano Lett. 18, 1739–1744 (2018).

    CAS  Google Scholar 

  26. 26.

    Comtet, J. et al. Wide-field spectral super-resolution mapping of optically active defects in hexagonal boron nitride. Nano Lett. 19, 2516–2523 (2019).

    CAS  Google Scholar 

  27. 27.

    Freier, E., Wolf, S. & Gerwert, K. Proton transfer via a transient linear water-molecule chain in a membrane protein. Proc. Natl Acad. Sci. USA 108, 11435–11439 (2011).

    CAS  Google Scholar 

  28. 28.

    Wendt, S. et al. Formation and splitting of paired hydroxyl groups on reduced TiO2. Phys. Rev. Lett. 96, 066107 (2006).

    CAS  Google Scholar 

  29. 29.

    Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent. J. Cryst. Growth 303, 525–529 (2007).

    CAS  Google Scholar 

  30. 30.

    Léonard, S., Ingrid, S., Frédéric, F., Annick, L. & Julien, B. Characterization methods dedicated to nanometer-thick hBN layers. 2D Mater. 4, 15028 (2017).

    Google Scholar 

  31. 31.

    Vogl, T., Campbell, G., Buchler, B. C., Lu, Y. & Lam, P. K. Fabrication and deterministic transfer of high-quality quantum emitters in hexagonal boron nitride. ACS Photonics 5, 2305–2312 (2018).

    CAS  Google Scholar 

  32. 32.

    Martínez, L. J. et al. Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Phys. Rev. B 94, 121405 (2016).

    Google Scholar 

  33. 33.

    Weston, L., Wickramaratne, D., Mackoit, M., Alkauskas, A. & Van De Walle, C. G. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 97, 214104 (2018).

    CAS  Google Scholar 

  34. 34.

    Wang, Q. et al. Photoluminescence upconversion by defects in hexagonal boron nitride. Nano Lett. 18, 6898–6905 (2018).

    CAS  Google Scholar 

  35. 35.

    Agmon, N. Elementary steps in excited-state proton transfer. J. Phys. Chem. A 109, 13–35 (2005).

    CAS  Google Scholar 

  36. 36.

    Scharnagl, C., Raupp-Kossmann, R. & Fischer, S. F. Molecular basis for pH sensitivity and proton transfer in green fluorescent protein: protonation and conformational substates from electrostatic calculations. Biophys. J. 77, 1839–1857 (1999).

    CAS  Google Scholar 

  37. 37.

    Habuchi, S. et al. Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. Photochem. Photobiol. Sci. 5, 567–576 (2006).

    CAS  Google Scholar 

  38. 38.

    Janssen, K. P. F. et al. Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. Chem. Soc. Rev. 43, 990–1006 (2014).

    CAS  Google Scholar 

  39. 39.

    Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

    CAS  Google Scholar 

  40. 40.

    Zou, N. et al. Cooperative communication within and between single nanocatalysts. Nat. Chem. 10, 607–614 (2018).

    CAS  Google Scholar 

  41. 41.

    Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

    CAS  Google Scholar 

  42. 42.

    Bouchaud, J. P., Comtet, A., Georges, A. & Le Doussal, P. Classical diffusion of a particle in a one-dimensional random force field. Ann. Phys. 201, 285–341 (1990).

    CAS  Google Scholar 

  43. 43.

    Zaburdaev, V., Denisov, S. & Klafter, J. Lévy walks. Rev. Mod. Phys. 87, 483–530 (2015).

    CAS  Google Scholar 

  44. 44.

    Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D. & Dencher, N. A. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 370, 379–382 (1994).

    CAS  Google Scholar 

  45. 45.

    Halle, B. & Karlström, G. Prototropic charge migration in water. J. Chem. Soc. Faraday Trans. 79, 1047–1073 (1983).

    CAS  Google Scholar 

  46. 46.

    Sluyters, J. H. & Sluyters-Rehbach, M. The mechanism of the hydrogen ion conduction in liquid light and heavy water derived from the temperature dependence of their limiting conductivities. J. Phys. Chem. B 114, 15582–15589 (2010).

    CAS  Google Scholar 

  47. 47.

    Eilers, Y., Ta, H., Gwosch, K. C., Balzarotti, F. & Hell, S. W. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc. Natl Acad. Sci. USA 115, 6117–6122 (2018).

    CAS  Google Scholar 

  48. 48.

    Reed, D. A. & Ehrlich, G. Surface diffusion, atomic jump rates and thermodynamics. Surf. Sci. 102, 588–609 (1981).

    CAS  Google Scholar 

  49. 49.

    Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    CAS  Google Scholar 

  50. 50.

    Weichselbaum, E. et al. Origin of proton affinity to membrane/water interfaces. Sci. Rep. 7, 1–8 (2017).

    CAS  Google Scholar 

  51. 51.

    Kudin, K. N. & Car, R. Why are water-hydrophobic interfaces charged? J. Am. Chem. Soc. 130, 3915–3919 (2008).

    CAS  Google Scholar 

  52. 52.

    Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14, 6872–6877 (2014).

    CAS  Google Scholar 

  53. 53.

    Dellago, C. & Hummer, G. Kinetics and mechanism of proton transport across membrane nanopores. Phys. Rev. Lett. 97, 1–4 (2006).

    Google Scholar 

Download references


J.C. acknowledges valuable discussions with A. Descloux and V. Navikas. This work was financially supported by the Swiss National Science Foundation Consolidator grant (BIONIC BSCGI0_157802) and CCMX project (Large area growth of 2D materials for device integration). E.G. acknowledges support from the Swiss National Science Foundation through the National Centre of Competence in Research Bio-Inspired Materials. The quantum simulation work was performed on the French national supercomputer Occigen under DARI grants A0030807364 and A0030802309. M.-L.B. acknowledges funding from ANR project Neptune. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT, Japan, and CREST (JPMJCR15F3), JST.

Author information




J.C. and A.R. conceived and designed the experiments and J.C. performed the experiments with help from E.G. and A.A. J.C. analysed data and wrote the paper, with input from all authors. B.G. carried out simulations, with help from R.V. and M.-L.B, and K.W. and T.T. contributed materials. A.R. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jean Comtet or Aleksandra Radenovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Johan Hofkens, Peter Pohl and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Discussions 1–5 and refs. 1–29.

Supplementary Video 1

Protonation of VB- by H2O. Hydrogen, boron, nitrogen and oxygen atoms are respectively represented in white, blue, green and red while the reactive aqueous species is displayed in cyan.

Supplementary Video 2

Wide-field movie of the flake shown in Fig. 3. Movies are slowed down 5 times (10 frames per second, with 20 ms sampling time). Red circles show positions of localized defects. Circles have 300 nm radius.

Supplementary Video 3

Luminescence trajectory of Fig. 2. Scale bar is 500 nm.

Supplementary Video 4

Luminescence trajectory of Fig. 3a.

Supplementary Video 5

Luminescence trajectory of Fig. 3c.

Supplementary Video 6

Luminescence trajectory of Fig. 3b.

Supplementary Video 7

Luminescence trajectory of Fig. S19A.

Supplementary Video 8

Luminescence trajectory of Fig. S19B.

Supplementary Video 9

Non-biased trajectory of hydronium ion physisorbed at the hBN/water interface. The hydronium, hydrogen, boron, nitrogen and oxygen atoms are respectively represented in yellow, white, blue, green and red.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Comtet, J., Grosjean, B., Glushkov, E. et al. Direct observation of water-mediated single-proton transport between hBN surface defects. Nat. Nanotechnol. 15, 598–604 (2020).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research