Spontaneous and reversible hollowing of alloy anode nanocrystals for stable battery cycling

Subjects

Abstract

High-capacity alloy anode materials for Li-ion batteries have long been held back by limited cyclability caused by the large volume changes during lithium insertion and removal. Hollow and yolk-shell nanostructures have been used to increase the cycling stability by providing an inner void space to accommodate volume changes and a mechanically and dimensionally stable outer surface. These materials, however, require complex synthesis procedures. Here, using in situ transmission electron microscopy, we show that sufficiently small antimony nanocrystals spontaneously form uniform voids on the removal of lithium, which are then reversibly filled and vacated during cycling. This behaviour is found to arise from a resilient native oxide layer that allows for an initial expansion during lithiation but mechanically prevents shrinkage as antimony forms voids during delithiation. We developed a chemomechanical model that explains these observations, and we demonstrate that this behaviour is size dependent. Thus, antimony naturally evolves to form optimal nanostructures for alloy anodes, as we show through electrochemical experiments in a half-cell configuration in which 15-nm antimony nanocrystals have a consistently higher Coulombic efficiency than larger nanoparticles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: In situ TEM of lithiation/delithiation cycling of Sb nanocrystals.
Fig. 2: Analysis of the delithiation process of a group of Li–Sb nanocrystals.
Fig. 3: Structural evolution of nanocrystals and larger nanoparticles.
Fig. 4: Electrochemical investigation of Sb-based electrodes in half-cells.
Fig. 5: Chemomechanical model of void growth.

Data availability

The data that support the plots within this article and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    Zhang, W.-J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Obrovac, M. N. & Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    McDowell, M. T., Lee, S. W., Nix, W. D. & Cui, Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966–4985 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    McDowell, M. T., Xia, S. & Zhu, T. The mechanics of large-volume-change transformations in high-capacity battery materials. Extreme Mech. Lett. 9, 480–494 (2016).

    Article  Google Scholar 

  8. 8.

    Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Lee, S. W., McDowell, M. T., Berla, L. A., Nix, W. D. & Cui, Y. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl Acad. Sci. USA 109, 4080–4085 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Chen, Q. & Sieradzki, K. Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat. Mater. 12, 1102–1106 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Boebinger, M. G. et al. Avoiding fracture in a conversion battery material through reaction with larger ions. Joule 2, 1783–1799 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Wang, J. et al. Structural evolution and pulverization of tin nanoparticles during lithiation–delithiation cycling. J. Electrochem. Soc. 161, F3019–F3024 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342, 716–720 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Qi, W. et al. Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. J. Mater. Chem. A 5, 19521–19540 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Zhang, S., Zhao, K., Zhu, T. & Li, J. Electrochemomechanical degradation of high-capacity battery electrode materials. Prog. Mater. Science 89, 479–521 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Wu, H. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Liu, N. et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12, 3315–3321 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Liu, J. et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 17, 2034–2042 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Liu, S., Feng, J., Bian, X., Liu, J. & Xu, H. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy Environ. Sci. 9, 1229–1236 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Liang, W. et al. Nanovoid formation and annihilation in gallium nanodroplets under lithiation–delithiation cycling. Nano Lett. 13, 5212–5217 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Zhou, X. et al. In situ focused ion beam scanning electron microscope study of microstructural evolution of single tin particle anode for Li-ion batteries. ACS Appl. Mater. Interfaces 11, 1733–1738 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Adkins, E. R., Jiang, T., Luo, L., Wang, C.-M. & Korgel, B. A. In situ transmission electron microscopy of oxide shell-induced pore formation in (de)lithiated silicon nanowires. ACS Energy Lett. 3, 2829–2834 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    He, Y. et al. In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries. ACS Nano 8, 11816–11823 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Liu, X. H. et al. Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: an in situ transmission electron microscopy study. Nano Lett. 11, 3991–3997 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    He, M., Kravchyk, K., Walter, M. & Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. Nano Lett. 14, 1255–1262 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Darwiche, A. et al. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 134, 20805–20811 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Baggetto, L. et al. Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory. J. Mater. Chem. A 1, 7985–7994 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Li, Z. et al. Coupling in situ TEM and ex situ analysis to understand heterogeneous sodiation of antimony. Nano Lett. 15, 6339–6348 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  30. 30.

    Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    Gutiérrez-Kolar, J. S. et al. Interpreting electrochemical and chemical sodiation mechanisms and kinetics in tin antimony battery anodes using in situ transmission electron microscopy and computational methods. ACS Appl. Energy Mater. 2, 3578–3586 (2019).

    Article  CAS  Google Scholar 

  32. 32.

    Ruzmetov, D. et al. Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. Nano Lett. 12, 505–511 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Xie, H. et al. β-SnSb for sodium ion battery anodes: phase transformations responsible for enhanced cycling stability revealed by in situ TEM. ACS Energy Lett. 3, 1670–1676 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    He, K. et al. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy. Nat. Commun. 7, 11441 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Boebinger, M. G. et al. Distinct nanoscale reaction pathways in a sulfide material for sodium and lithium batteries. J. Mater. Chem. A 5, 11701–11709 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    McDowell, M. T. et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Goodno, B. J. & Gere, J. M. Statics and Mechanics of Materials (Cengage, 2019).

  38. 38.

    Hutchinson, J. W. Buckling of spherical shells revisited. Proc. R. Soc. A 472, 20160577 (2016).

    Article  Google Scholar 

  39. 39.

    Niu, K.-Y., Park, J., Zheng, H. & Alivisatos, A. P. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett. 13, 5715–5719 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    Wang, W., Dahl, M. & Yin, Y. Hollow nanocrystals through the nanoscale Kirkendall effect. Chem. Mater. 25, 1179–1189 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Arganda-Carreras, I. et al. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Tippens, J. et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Energy Lett. 4, 1475–1483 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    Bowen, J. R. DiffractIndex (Matlab Central File Exchange, accessed 29 October 2018); https://www.mathworks.com/matlabcentral/fileexchange/54789-diffractindex

  44. 44.

    Kravchyk, K. et al. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J. Am. Chem. Soc. 135, 4199–4202 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was performed at the Georgia Tech Materials Characterization Facility and the Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (Grant ECCS-1542174). M.G.B. acknowledges support from the DOE Office of Science Graduate Student Research Program for research performed at Oak Ridge National Laboratory. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility (K.A.U. and R.R.U.). M.T.M. acknowledges support from a Sloan Research Fellowship in Chemistry from the Alfred P. Sloan Foundation. M.Y. acknowledges financial support from the Swiss National Science foundation via an Ambizione Fellowship (no. 161249). M.G.B. acknowledges F. J. Q. Cortes for assistance with the Cr deposition and N. Kondekar for assistance with the diffraction analysis.

Author information

Affiliations

Authors

Contributions

M.T.M., V.W. and M.G.B. conceived the study. M.G.B. conducted the TEM experiments, electrochemical experiments and data analysis. O.Y., M.Y. and V.W. synthesized all the materials used for this study and contributed to the data analysis. K.A.U. conducted the STEM–EDS experiments. R.R.U. assisted with the TEM and STEM measurements. M.T.M. guided the experiments and data analysis and performed modelling. M.G.B. and M.T.M. wrote the manuscript with input from all the authors.

Corresponding author

Correspondence to Matthew T. McDowell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Morphology evolution of a group of Sb nanocrystals during repeated cycling.

(a) Group of pristine Sb crystals before cycling. (b) The same cluster after the first lithiation (i) and delithiation (ii). (c) After the second lithiation/delithiation. (d) After the third lithiation/delithiation. (e) After the fourth lithiation/delithiation. (f) After the fifth lithiation/delithiation. (g) After the sixth lithiation/delithiation. Since this is a larger group of particles compared to Supplementary Fig. 3, some particles are not fully lithiated or delithiated in each cycle due to transport limitations in the in situ experiment, resulting in a lack of volume change or hollowing behavior during that particular cycle.

Extended Data Fig. 2 Galvanostatic curves from Sb-based electrodes with different particle sizes at two different rates: 1 C (660 mA g−1) and C/10 (66 mA g−1).

(a, b) Data from 15-nm monodisperse nanocrystals at C/10 (a) and 1 C (b). (c, d) Data from 40-140 nm polydisperse nanoparticles at C/10 (c) and 1 C (d). (e, f) Data from bulk particles at C/10 (e) and 1 C (f). The curves at a rate of 1 C correspond to the specific capacity plots in Fig. 4b in the main text. All three samples at both rates show a discharge plateau at ~0.8 V vs. Li/Li+ and a charge plateau at ~1.0 V vs. Li/Li+, which are ascribed to the two-phase lithiation/delithiation of Sb. The small nanocrystals and larger nanoparticles show a higher plateau (~0.8–1.4 V vs. Li/Li+) during the initial discharge that corresponds to the conversion of the surface oxides to a lithiated phase (a, c). The nanocrystals exhibit a greater specific capacity associated with this oxide layer reaction (a) than the larger nanoparticles (c) due to the greater surface area of the nanocrystals. Source data

Extended Data Fig. 3 Comparing in situ TEM sodiation/desodiation of Sb nanocrystals to lithiation/delithiation.

(a) TEM image of a group of Sb nanocrystals that have undergone sodiation. (b) Image of a different group of Sb nanocrystals that have been desodiated. (c) TEM image of a group of Sb nanocrystals that have undergone lithiation, and (d) the same group after delithiation. The morphology of the delithiated and desodiated particles is similar. In these images, it is clear that there is some merging of the oxide shells between particles after the reaction process, which is especially clear for the desodiation case (b). The metal regions within the oxide shells remain distinct, however.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Videos 1 and 2, Methods and refs. 1–3.

Supplementary Video 1

Supplementary Video 1 shows the volume expansion during the initial lithiation process of a group of Sb nanocrystals. This video is shown at 4 times the actual speed.

Supplementary Video 2

Supplementary Video 2 shows several lithiation and delithiation steps that the Sb nanocrystals in Fig. 2 underwent, starting with the second lithiation of the particles (the first cycle was not captured on video). This is followed by the delithiation process that is discussed and shown in detail in Fig. 2. Finally, the third lithiation step is shown as the voids are filled once more. This video is shown at 6 times the actual speed.

Source data

Source Data Fig. 2

Data used for plotting Fig. 2e.

Source Data Fig. 3

Data used for plotting Fig. 3a.

Source Data Fig. 4

Data used for plotting Fig. 4.

Source Data Extended Data Fig. 2

Data use for plotting Extended Data Fig. 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boebinger, M.G., Yarema, O., Yarema, M. et al. Spontaneous and reversible hollowing of alloy anode nanocrystals for stable battery cycling. Nat. Nanotechnol. 15, 475–481 (2020). https://doi.org/10.1038/s41565-020-0690-9

Download citation