Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atomic reconstruction in twisted bilayers of transition metal dichalcogenides

Abstract

Van der Waals heterostructures form a unique class of layered artificial solids in which physical properties can be manipulated through controlled composition, order and relative rotation of adjacent atomic planes. Here we use atomic-resolution transmission electron microscopy to reveal the lattice reconstruction in twisted bilayers of the transition metal dichalcogenides, MoS2 and WS2. For twisted 3R bilayers, a tessellated pattern of mirror-reflected triangular 3R domains emerges, separated by a network of partial dislocations for twist angles θ < 2°. The electronic properties of these 3R domains, featuring layer-polarized conduction-band states caused by lack of both inversion and mirror symmetry, appear to be qualitatively different from those of 2H transition metal dichalcogenides. For twisted 2H bilayers, stable 2H domains dominate, with nuclei of a second metastable phase. This appears as a kagome-like pattern at θ ≈ 2°, transitioning at θ → 0 to a hexagonal array of screw dislocations separating large-area 2H domains. Tunnelling measurements show that such reconstruction creates strong piezoelectric textures, opening a new avenue for engineering of 2D material properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Lattice domains in homo- and hetero-bilayers of MoS2 and WS2.
Fig. 2: Lattice reconstruction in twisted WS2 homo-bilayers.
Fig. 3: Evolution of commensurate domains with twist angle for AP-WS2 and AP-MoS2 homo-bilayers.
Fig. 4: Electronic properties of twisted bilayers.

Data availability

Additional data related to this paper is available from the corresponding authors upon reasonable request.

Code availability

The computer code used for the image filtering is available from the corresponding authors upon reasonable request.

References

  1. 1.

    Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Yin, L. J., Jiang, H., Qiao, J. B. & He, L. Direct imaging of topological edge states at a bilayer graphene domain wall. Nat. Commun. 7, 1–6 (2016).

    Google Scholar 

  6. 6.

    Huang, S. et al. Topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 121, 37702 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    CAS  Article  Google Scholar 

  13. 13.

    Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Zhang, K. & Tadmor, E. B. Structural and electron diffraction scaling of twisted graphene bilayers. J. Mech. Phys. Solids 112, 225–238 (2018).

    Article  Google Scholar 

  15. 15.

    Butz, B. et al. Dislocations in bilayer graphene. Nature 505, 533–537 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Naik, M. H., Maity, I., Maity, P. K. & Jain, M. Kolmogorov–Crespi potential for multilayer transition-metal dichalcogenides: capturing structural transformations in moiré superlattices. J. Phys. Chem. C 123, 9770–9778 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    Naik, M. H. & Jain, M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 121, 266401 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Carr, S. et al. Relaxation and domain formation in incommensurate two-dimensional heterostructures. Phys. Rev. B 98, 224102 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Suzuki, R. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 9, 611–617 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Ubrig, N. et al. Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Lett. 17, 5719–5725 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Enaldiev, V. V., Zólyomi, V., Yelgel, C., Magorrian, S. J. & Fal’ko, V. I. Stacking domains and dislocation networks in marginally twisted bilayers of transition metal dichalcogenides. Preprint at https://arxiv.org/abs/1911.12804 (2019).

  23. 23.

    Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 10, 151–155 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Duerloo, K. A. N., Ong, M. T. & Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Iordanskii, S. & Koshelev, A. Dislocations and localization effects in multivalley conductors. JETP Lett. 41, 574 (1985).

    Google Scholar 

  26. 26.

    Rostami, H., Roldán, R., Cappelluti, E., Asgari, R. & Guinea, F. Theory of strain in single-layer transition metal dichalcogenides. Phys. Rev. B 92, 195402 (2015).

    Article  Google Scholar 

  27. 27.

    Koch, C. T. Determination of Core Structure Periodicity and Point Defect Density Along Dislocations. PhD thesis, Arizona State Univ. (2002).

  28. 28.

    Salmon, J., Harmany, Z., Deledalle, C.-A. & Willett, R. Poisson noise reduction with non-local PCA. J. Math. Imaging Vis. 48, 279–294 (2014).

    Article  Google Scholar 

  29. 29.

    Giannozzi, P. et al. Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Cond. Mat. 21, 395502 (2009).

    Article  Google Scholar 

  30. 30.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  31. 31.

    Schutte, W., Boer, J. D. & Jellinek, F. Crystal structures of tungsten disulfide and diselenide. J. Solid State Chem. 70, 207–209 (1987).

    CAS  Article  Google Scholar 

  32. 32.

    Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012).

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC) grants EP/N010345/1, EP/P009050/1, EP/S019367/1, EP/S030719/1, EP/P01139X/1, EP/R513374/1 and the Centre for Doctoral Training (CDT) Graphene-NOWNANO, and the EPSRC Doctoral Prize Fellowship. We also acknowledge support from the European Graphene Flagship Project, European Quantum Technology Flagship Project 2D-SIPC (820378), European Research Council (ERC) Synergy Grant Hetero2D, ERC Starter grant EvoluTEM (715502), Royal Society and Lloyd Register Foundation Nanotechnology grant. V.E. (reconstruction simulations) acknowledges the support of the Russian Science Foundation (project no. 16-12-10411). P.H.B. acknowledges support from the Leverhulme Trust (Research Fellowship grant RF-2019-460). We thank Diamond Light Source for access and support in use of the electron Physical Science Imaging Centre (Instrument E02 and proposal numbers EM19315 and MG21597) that contributed to the results presented here.

Author information

Affiliations

Authors

Contributions

V.I.F., S.J.H. and R.G. conceived the study. A.W. fabricated samples for TEM and cAFM. S.J.H., Y.Z. and N.C. performed TEM measurements. D.H. performed TEM simulations. N.C. processed the TEM data. N.C. and M.Z. provided custom TEM grids. V.E., V.Z., S.M., C.Y and V.I.F. provided DFT and multicale modelling and interpretation of the observations. A.S. and A.W. performed cAFM measurements with the help of T.H.B. and P.H.B. A.W. and J.Z. fabricated ARPES samples. A.G., A.B. and N.R.W. performed ARPES measurements. R.G., V.I.F., S.J.H. and A.W. wrote the manuscript. All authors contributed to the discussions and commented on the manuscript.

Corresponding authors

Correspondence to Vladimir I. Fal’ko or Sarah J. Haigh or Roman Gorbachev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Sergei Kalinin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, Figs. 1–21 and refs. 1–19.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weston, A., Zou, Y., Enaldiev, V. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020). https://doi.org/10.1038/s41565-020-0682-9

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research