MOF water harvesters


The advancement of additional methods for freshwater generation is imperative to effectively address the global water shortage crisis. In this regard, extraction of the ubiquitous atmospheric moisture is a powerful strategy allowing for decentralized access to potable water. The energy requirements as well as the temporal and spatial restrictions of this approach can be substantially reduced if an appropriate sorbent is integrated in the atmospheric water generator. Recently, metal–organic frameworks (MOFs) have been successfully employed as sorbents to harvest water from air, making atmospheric water generation viable even in desert environments. Herein, the latest progress in the development of MOFs capable of extracting water from air and the design of atmospheric water harvesters deploying such MOFs are reviewed. Furthermore, future directions for this emerging field, encompassing both material and device improvements, are outlined.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: World map displaying the spatial and temporal feasibility of atmospheric water generation through direct cooling.
Fig. 2: Reticular design of MOFs for atmospheric water harvesting.
Fig. 3: Juxtaposition of two classes of practical MOF water harvesters.
Fig. 4: Assessment of the current state of the art and future directions of atmospheric water harvesting with MOFs.


  1. 1.

    Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Google Scholar 

  2. 2.

    The Sustainable Development Goals Report 2018 (United Nations, 2018).

  3. 3.

    Oelkers, E. H., Hering, J. G. & Zhu, C. Water: Is there a global crisis? Elements 7, 157–162 (2011).

    Google Scholar 

  4. 4.

    WWAP (UNESCO World Water Assessment Programme). The United Nations World Water Development Report 2019: Leaving No One Behind (UNESCO, 2019).

  5. 5.

    Elimelech, M. & Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science 333, 712–717 (2011).

    CAS  Google Scholar 

  6. 6.

    Wahlgren, R. V. Atmospheric water vapour processor designs for potable water production: A review. Water Res. 35, 1–22 (2001).

    CAS  Google Scholar 

  7. 7.

    Klemm, O. et al. Fog as a fresh-water resource: Overview and perspectives. Ambio 41, 221–234 (2012).

    Google Scholar 

  8. 8.

    Bagheri, F. Performance investigation of atmospheric water harvesting systems. Water Resour. Ind. 20, 23–28 (2018).

    Google Scholar 

  9. 9.

    Gido, B., Friedler, E. & Broday, D. M. Assessment of atmospheric moisture harvesting by direct cooling. Atmos. Res. 182, 156–162 (2016).

    Google Scholar 

  10. 10.

    Elmer, T. H. & Franklin Hyde, J. Recovery of water from atmospheric air in arid climates. Sep. Sci. Technol. 21, 251–266 (1986).

    CAS  Google Scholar 

  11. 11.

    Furukawa, H. et al. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).

    CAS  Google Scholar 

  12. 12.

    Yu, N., Wang, R. Z., Lu, Z. S. & Wang, L. W. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage. Chem. Eng. Sci. 111, 73–84 (2014).

    CAS  Google Scholar 

  13. 13.

    Ng, E.-P. & Mintova, S. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous Mesoporous Mater. 114, 1–26 (2008).

    CAS  Google Scholar 

  14. 14.

    Krajnc, A. et al. Superior performance of microporous aluminophosphate with LTA topology in solar-energy storage and heat reallocation. Adv. Energy Mater. 7, 1601815 (2017).

    Google Scholar 

  15. 15.

    Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    CAS  Google Scholar 

  16. 16.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Google Scholar 

  17. 17.

    Kalmutzki, M. J., Hanikel, N. & Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180 (2018).

    CAS  Google Scholar 

  18. 18.

    Furukawa, H. et al. Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010).

    CAS  Google Scholar 

  19. 19.

    Farha, O. K. et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012).

    CAS  Google Scholar 

  20. 20.

    Hönicke, I. M. et al. Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angew. Chem. Int. Ed. 57, 13780–13783 (2018).

    Google Scholar 

  21. 21.

    Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).

    CAS  Google Scholar 

  22. 22.

    Kim, H. et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9, 1191 (2018).

    Google Scholar 

  23. 23.

    Fathieh, F. et al. Practical water production from desert air. Sci. Adv. 4, eaat3198 (2018).

    Google Scholar 

  24. 24.

    Hanikel, N. et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent. Sci. 5, 1699–1706 (2019).

    CAS  Google Scholar 

  25. 25.

    Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

    CAS  Google Scholar 

  26. 26.

    Kalmutzki, M. J., Diercks, C. S. & Yaghi, O. M. Metal-organic frameworks for water harvesting from air. Adv. Mater. 30, 1704304 (2018).

    Google Scholar 

  27. 27.

    Rieth, A. J., Wright, A. M. & Dincă, M. Kinetic stability of metal-organic frameworks for corrosive and coordinating gas capture. Nat. Rev. Mater. 4, 708–725 (2019).

    CAS  Google Scholar 

  28. 28.

    Choi, H. J., Dincǎ, M., Dailly, A. & Long, J. R. Hydrogen storage in water-stable metal-organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate. Energy Environ. Sci. 3, 117–123 (2010).

    CAS  Google Scholar 

  29. 29.

    Jasuja, H. & Walton, K. S. Effect of catenation and basicity of pillared ligands on the water stability of MOFs. Dalt. Trans. 42, 15421–15426 (2013).

    CAS  Google Scholar 

  30. 30.

    Chen, Z. et al. Reticular access to highly porous acs-MOFs with rigid trigonal prismatic linkers for water sorption. J. Am. Chem. Soc. 141, 2900–2905 (2019).

    CAS  Google Scholar 

  31. 31.

    Mondloch, J. E. et al. Are Zr6-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chem. Commun. 50, 8944–8946 (2014).

    CAS  Google Scholar 

  32. 32.

    Wahiduzzaman, M., Lenzen, D., Maurin, G., Stock, N. & Wharmby, M. T. Rietveld refinement of MIL-160 and its structural flexibility upon H2O and N2 adsorption. Eur. J. Inorg. Chem. 2018, 3626–3632 (2018).

    CAS  Google Scholar 

  33. 33.

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    CAS  Google Scholar 

  34. 34.

    Cavka, J. H., Olsbye, U., Guillou, N., Bordiga, S. & Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Google Scholar 

  35. 35.

    Abtab, S. M. T. et al. Reticular chemistry in action: A hydrolytically stable MOF capturing twice its weight in adsorbed water. Chem 4, 94–105 (2018).

    Google Scholar 

  36. 36.

    Akiyama, G. et al. Effect of functional groups in MIL-101 on water sorption behavior. Microporous Mesoporous Mater. 157, 89–93 (2012).

    CAS  Google Scholar 

  37. 37.

    Reinsch, H. et al. Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chem. Mater. 25, 17–26 (2013).

    CAS  Google Scholar 

  38. 38.

    Cadiau, A. et al. Design of hydrophilic metal organic framework water adsorbents for heat reallocation. Adv. Mater. 27, 4775–4780 (2015).

    CAS  Google Scholar 

  39. 39.

    Brozek, C. K. & Dincă, M. Cation exchange at the secondary building units of metal-organic frameworks. Chem. Soc. Rev. 43, 5456–5467 (2014).

    CAS  Google Scholar 

  40. 40.

    Wright, A. M., Rieth, A. J., Yang, S., Wang, E. N. & Dincǎ, M. Precise control of pore hydrophilicity enabled by post-synthetic cation exchange in metal-organic frameworks. Chem. Sci. 9, 3856–3859 (2018).

    CAS  Google Scholar 

  41. 41.

    Rieth, A. J. et al. Record-setting sorbents for reversible water uptake by systematic anion-exchanges in metal-organic frameworks. J. Am. Chem. Soc. 141, 13858–13866 (2019).

    CAS  Google Scholar 

  42. 42.

    Rubio-Martinez, M. et al. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 46, 3453–3480 (2017).

    CAS  Google Scholar 

  43. 43.

    Lenzen, D. et al. Scalable green synthesis and full-scale test of the metal-organic framework CAU-10-H for use in adsorption-driven chillers. Adv. Mater. 30, 1705869 (2017).

    Google Scholar 

  44. 44.

    Reinsch, H., Waitschat, S., Chavan, S. M., Lillerud, K. P. & Stock, N. A facile “green” route for scalable batch production and continuous synthesis of zirconium MOFs. Eur. J. Inorg. Chem. 2016, 4490–4498 (2016).

    CAS  Google Scholar 

  45. 45.

    Julien, P. A., Mottillo, C. & Friščić, T. Metal-organic frameworks meet scalable and sustainable synthesis. Green Chem. 19, 2729–2747 (2017).

    CAS  Google Scholar 

  46. 46.

    Ghosh, P., Colón, Y. J. & Snurr, R. Q. Water adsorption in UiO-66: The importance of defects. Chem. Commun. 50, 11329–11331 (2014).

    CAS  Google Scholar 

  47. 47.

    Hossain, M. I. & Glover, T. G. Kinetics of water adsorption in UiO-66 MOF. Ind. Eng. Chem. Res. 58, 10550–10558 (2019).

    CAS  Google Scholar 

  48. 48.

    Huang, B. L., McGaughey, A. J. H. & Kaviany, M. Thermal conductivity of metal-organic framework 5 (MOF-5): Part I. Molecular dynamics simulations. Int. J. Heat Mass Transf. 50, 393–404 (2007).

    CAS  Google Scholar 

  49. 49.

    Huang, B. L. et al. Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement. Int. J. Heat Mass Transf. 50, 405–411 (2007).

    CAS  Google Scholar 

  50. 50.

    Yang, S., Kim, H., Narayanan, S., McKay, I. S. & Wang, E. N. Dimensionality effects of carbon-based thermal additives for microporous adsorbents. Mater. Des. 85, 520–526 (2015).

    CAS  Google Scholar 

  51. 51.

    Ming, Y. et al. Anisotropic thermal transport in MOF-5 composites. Int. J. Heat Mass Transf. 82, 250–258 (2015).

    Google Scholar 

  52. 52.

    Yang, S., Huang, X., Chen, G. & Wang, E. N. Three-dimensional graphene enhanced heat conduction of porous crystals. J. Porous Mater. 23, 1647–1652 (2016).

    CAS  Google Scholar 

  53. 53.

    Chiavazzo, E., Morciano, M., Viglino, F., Fasano, M. & Asinari, P. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 1, 763–772 (2018).

    Google Scholar 

  54. 54.

    González-Bravo, R., Ponce-Ortega, J. M. & El-Halwagi, M. M. Optimal design of water desalination systems involving waste heat recovery. Ind. Eng. Chem. Res. 56, 1834–1847 (2017).

    Google Scholar 

  55. 55.

    Wang, Z. et al. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5, eaax0763 (2019).

    Google Scholar 

  56. 56.

    Cho, H. J., Preston, D. J., Zhu, Y. & Wang, E. N. Nanoengineered materials for liquid-vapour phase-change heat transfer. Nat. Rev. Mater. 2, 16092 (2016).

    Google Scholar 

  57. 57.

    Ahlers, M., Buck-Emden, A. & Bart, H.-J. Is dropwise condensation feasible? A review on surface modifications for continuous dropwise condensation and a profitability analysis. J. Adv. Res. 16, 1–13 (2019).

    CAS  Google Scholar 

  58. 58.

    Warsinger, D. M., Mistry, K. H., Nayar, K. G., Chung, H. W. & Lienhard, V. J. H. Entropy generation of desalination powered by variable temperature waste heat. Entropy 17, 7530–7566 (2015).

    CAS  Google Scholar 

  59. 59.

    Brogioli, D., La Mantia, F. & Yip, N. Y. Thermodynamic analysis and energy efficiency of thermal desalination processes. Desalination 428, 29–39 (2018).

    CAS  Google Scholar 

  60. 60.

    Acker, J. G. & Leptoukh, G. Online analysis enhances use of NASA Earth Science Data. Eos 88, 14–17 (2007).

    Google Scholar 

Download references


Financial support for this research is provided by the King Abdulaziz City for Science and Technology as part of a joint KACST-UC Berkeley collaboration (Center of Excellence for Nanomaterials and Clean Energy Applications). N.H. thanks the Studienstiftung des deutschen Volkes and acknowledges the receipt of the Kavli ENSI Philomathia Graduate Fellowship. M.S.P. is grateful to the Swiss National Science Foundation for funding through the Early Postdoc Mobility fellowship program (award P2ELP2_175067). We thank C. Gropp for useful discussions. Analyses and visualizations used in this Review Article were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC. We also acknowledge the AIRS mission scientists and associated NASA personnel for the production of the data used for the MHI calculations in this publication.

Author information



Corresponding author

Correspondence to Omar M. Yaghi.

Ethics declarations

Competing interests

O.M.Y. is co-founder of Water Harvesting Inc., aiming at commercializing related technologies.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanikel, N., Prévot, M.S. & Yaghi, O.M. MOF water harvesters. Nat. Nanotechnol. 15, 348–355 (2020).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research