Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry


Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion1,2,3,4. Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies5 and peptides6 or that address late steps of the viral replication cycle7.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functionalized Qβ phage capsids as high-affinity IAV binders.
Fig. 2: Cryo-TEM images of A/X31 incubated with diverse Qβ phage capsids.
Fig. 3: Modelling the interaction between Sia binding sites of HA and Sia residues of Qß capsid.
Fig. 4: Inhibitory potential of Qβ[Sia1] against various IAV strains.

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. All relevant data are available from the authors upon reasonable request. Model coordinates of the HA–Sia binding pockets and the Qβ capsid surface are taken from the Protein Data Bank under accession numbers 1HGG and 1QBE, respectively.

Code availability

Custom code is available from the corresponding author (S.L.).


  1. Fasting, C. et al. Multivalency as a chemical organization and action principle. Angew. Chem. Int. Ed. 51, 10472–10498 (2012).

    Article  CAS  Google Scholar 

  2. Gestwicki, J. E., Cairo, C. W., Strong, L. E., Oetjen, K. A. & Kiessling, L. L. Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 124, 14922–14933 (2002).

    Article  CAS  Google Scholar 

  3. Kiessling, L. L., Gestwicki, J. E. & Strong, L. E. Synthetic multivalent ligands in the exploration of cell-surface interactions. Curr. Opin. Chem. Biol. 4, 696–703 (2000).

    Article  CAS  Google Scholar 

  4. Branson, T. R. et al. A protein-based pentavalent inhibitor of the cholera toxin B-subunit. Angew. Chem. Int. Ed. 53, 8323–8327 (2014).

    Article  CAS  Google Scholar 

  5. Wu, N. C. & Wilson, I. A. Structural insights into the design of novel anti-influenza therapies. Nat. Struct. Mol. Biol. 25, 115–121 (2018).

    Article  CAS  Google Scholar 

  6. Kadam, R. U. et al. Potent peptidic fusion inhibitors of influenza virus. Science 358, 496–502 (2017).

    Article  CAS  Google Scholar 

  7. van de Wakker, S. I., Fischer, M. J. E. & Oosting, R. S. New drug-strategies to tackle viral-host interactions for the treatment of influenza virus infections. Eur. J. Pharm. 809, 178–190 (2017).

    Article  Google Scholar 

  8. Weis, W. et al. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333, 426–431 (1988).

    Article  CAS  Google Scholar 

  9. Sauter, N. K. et al. Crystallographic detection of a second ligand binding site in influenza virus hemagglutinin. Proc. Natl Acad. Sci. USA 89, 324–328 (1992).

    Article  CAS  Google Scholar 

  10. Stevens, J. et al. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303, 1866–1870 (2004).

    Article  CAS  Google Scholar 

  11. Sauter, N. K. et al. Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic resonance study. Biochemistry 28, 8388–8396 (1989).

    Article  CAS  Google Scholar 

  12. Mammen, M., Choi, S. K. & Whitesides, G. M. Polyvalent Interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998).

    Article  Google Scholar 

  13. Lauster, D. et al. Multivalent peptide-nanoparticle conjugates for influenza-virus inhibition. Angew. Chem. Int. Ed. 56, 5931–5936 (2017).

    Article  CAS  Google Scholar 

  14. Curk, T., Dobnikar, J. & Frenkel, D. Optimal multivalent targeting of membranes with many distinct receptors. Proc. Natl Acad. Sci. USA 114, 7210–7215 (2017).

    Article  CAS  Google Scholar 

  15. Martinez-Veracoechea, F. J. & Frenkel, D. Designing super selectivity in multivalent nano-particle binding. Proc. Natl Acad. Sci. USA 108, 10963–10968 (2011).

    Article  CAS  Google Scholar 

  16. Mammen, M., Dahmann, G. & Whitesides, G. M. Effective inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. Insight into mechanism of inhibition. J. Med. Chem. 38, 4179–4190 (1995).

    Article  CAS  Google Scholar 

  17. Kwon, S. J. et al. Nanostructured glycan architecture is important in the inhibition of influenza A virus infection. Nat. Nanotechnol. 12, 48–54 (2017).

    Article  CAS  Google Scholar 

  18. Kingery-Wood, J. E., Williams, K. W., Sigal, G. E. & Whitesides, G. M. The agglutination of erythrocytes by influenza virus is strongly inhibited by liposomes incorporating an analog of sialyl gangliosides. J. Am. Chem. Soc. 114, 7303–7305 (1992).

    Article  CAS  Google Scholar 

  19. Wang, H. et al. Design and synthesis of glycoprotein-based multivalent glyco-ligands for influenza hemagglutinin and human galectin-3. Bioorg. Med. Chem. 21, 2037–2044 (2013).

    Article  CAS  Google Scholar 

  20. Bandlow, V. et al. Spatial screening of hemagglutinin on influenza A virus particles: sialyl-LacNAc displays on DNA and PEG scaffolds reveal the requirements for bivalency enhanced interactions with weak monovalent binders. J. Am. Chem. Soc. 139, 16389–16397 (2017).

    Article  CAS  Google Scholar 

  21. Waldmann, M. et al. A nanomolar multivalent ligand as entry inhibitor of the hemagglutinin of avian influenza. J. Am. Chem. Soc. 136, 783–788 (2014).

    Article  CAS  Google Scholar 

  22. Strauch, E. M. et al. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site. Nat. Biotechnol. 35, 667–671 (2017).

    Article  CAS  Google Scholar 

  23. Vonnemann, J. et al. Size dependence of steric shielding and multivalency effects for globular binding inhibitors. J. Am. Chem. Soc. 137, 2572–2579 (2015).

    Article  CAS  Google Scholar 

  24. Liese, S. & Netz, R. R. Quantitative prediction of multivalent ligand-receptor binding affinities for influenza, cholera, and anthrax inhibition. ACS Nano 12, 4140–4147 (2018).

    Article  CAS  Google Scholar 

  25. Yang, H. et al. Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins. Virology 477, 18–31 (2015).

    Article  CAS  Google Scholar 

  26. Ribeiro-Viana, R. et al. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nat. Commun. 3, 1303 (2012).

    Article  Google Scholar 

  27. Strable, E. et al. Unnatural amino acid incorporation into virus-like particles. Bioconjug. Chem. 19, 866–875 (2008).

    Article  CAS  Google Scholar 

  28. Crich, D. & Li, W. α-Selective sialylations at –78 °C in nitrile solvents with a 1-adamantanyl thiosialoside. J. Org. Chem. 72, 7794–7797 (2007).

    Article  CAS  Google Scholar 

  29. Hunter, C. A. & Anderson, H. L. What is cooperativity? Angew. Chem. Int. Ed. 48, 7488–7499 (2009).

    Article  CAS  Google Scholar 

  30. Tate, M. D. et al. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 6, 1294–1316 (2014).

    Article  Google Scholar 

  31. Roach, D. R. et al. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22, 38–47 (2017).

    Article  CAS  Google Scholar 

  32. Budisa, N. et al. High-level biosynthetic substitution of methionine in proteins by its analogs 2-aminohexanoic acid, selenomethionine, telluromethionine and ethionine in Escherichia coli. Eur. J. Biochem 230, 788–796 (1995).

    Article  CAS  Google Scholar 

  33. Desselberger, U. Relation of virus particle counts to the hemagglutinating activity of influenza virus suspensions measured by the HA pattern test and by use of the photometric HCU method. Arch. Virol. 49, 365–372 (1975).

    Article  CAS  Google Scholar 

  34. Bhatia, S. et al. Linear polysialoside outperforms dendritic analogs for inhibition of influenza virus infection in vitro and in vivo. Biomaterials 138, 22–34 (2017).

    Article  CAS  Google Scholar 

  35. Berg, J. et al. Tyk2 as a target for immune regulation in human viral/bacterial pneumonia. Eur. Respir. J. 50, 1601953 (2017).

  36. Hocke, A. C. et al. Emerging human Middle East respiratory syndrome coronavirus causes widespread infection and alveolar damage in human lungs. Am. J. Respir. Crit. Care Med. 188, 882–886 (2013).

    Article  Google Scholar 

  37. Weinheimer, V. K. Influenza A viruses target type II pneumocytes in the human lung. J. Infect. Dis. 206, 1685–1694 (2012).

    Article  Google Scholar 

  38. Branston, S. D., Wright, J. & Keshavarz-Moore, E. A non-chromatographic method for the removal of endotoxins from bacteriophages. Biotechnol. Bioeng. 112, 1714–1719 (2015).

    Article  CAS  Google Scholar 

Download references


We thank Andrew K. Udit for providing the Qβ(K16M) plasmid and L. Artner for synthetic contributions. This work was supported by the German Research Foundation (DFG, SFB765, SPP1623 and SFB-TR84) and the Germany Ministry of Education and Research (BMBF, RAPID) as well as Charité 3R and the Einstein Foundation Berlin.

Author information

Authors and Affiliations



D.L., S.K., S.L., K.L., M.W., L.E.S., A. Hamann, N.B., R.R.N., K.O., A.C.H., S.H., T.W., A. Herrmann and C.P.R.H. designed the study. D.L., S.K, S.N., S.B., M.S., S.S., S.F., K.H., U.H., M.B., L.A. and L.Y. performed the experiments. S.N. performed the capsid expression. K.L., S.D.C. and C.B. performed the electron microscopy and image analyses. J.N. carried out surgical interventions and prepared lung excisions. S.L. performed modelling, simulations and calculations. D.L., S.K., S.L., A. Herrmann, T.W. and C.P.R.H. prepared the manuscript. All authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Susanne Liese, Andreas Herrmann or Christian P. R. Hackenberger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Andrew Ward and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, experimental section, notes, analytical data and refs. 39–71.

Reporting Summary

Supplementary Video 1

Cryo-electron tomography of Qβ[Sia1] bound to A/X31 virus

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauster, D., Klenk, S., Ludwig, K. et al. Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. Nat. Nanotechnol. 15, 373–379 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research